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This contract has three primary designated research areas: distributed communi-
cations access, distributed processing, and distributed control and algorithms.

This report contains the abstracts of the publications which summarize our
research results in those areas during this semi-annual period, followed by the
main body of the report which consists of the Ph.D. dissertation by Kenneth
Kung, "Concurrency in Parallel Processing Systems", conducted under the super-
vision of Professor Leonard Kleinrock (Principal Investigator for this contract).
A model for parallel processing is introduced using the graph model of computa-
tion. Four key classification parameters are considered: the input (either a fixed
number of jobs, k, or a random arrival process with rate X jobs/scc); the structure
of the graph (either a fixed graph structure, G, or a random graph, G*); the ser-
vice time per task (either a fixed service time, X, or a random service time, Z7);
and the number of processors (either a finite number, P, or an infinite number
P =).

For the cases (k, G, X, P=) and (X G, 1', P=oo), we set up a Markov chain for
the number of concurrent tasks which solve for the equilibrium probabilities.
From this we also find the mean system response time and the speedup factor.
Using simpler methods, we place upper and lower bounds on the speedup. For the
case (k, G, X, P < -) we also bound the speedup for the special case of diamond-
shaped process graphs.

For random graphs with fixed service time (k, G ,Pa"), we find that, as N, the
number of tasks per job, approaches infinity, the speedup simply aprahes 2!
For random service times, we find that the speedup, S, is bounded by :5. <S 2.

We also present results for the optimal number of processes, P, for diamond-
shaped graphs for the case (k, G, XP < -) where the objective is to maximize"power" defined as throughput divided by response time.

The issue of communication overhead is also addressed in this work and we
study the effect of this overhead on the gains that are achieved from parallel pro-
cessing.

L

4.

b

..s O2.L€F. o4. 660I Unclassified

scuMrtv CASSiViCATION IV'iIS PAS9jtm D oo p,,*,*

• . . . . . . . , -..... . . , . . .• , . - . . . - . , - - . ,



,, .. .o-• 71. 17,. - - 1.. -,

ADVANCED TELEPROCESSING SYSTEMS

Defense Advanced Research Projects Agency
Semi - Annual Technical Report

March 31, 1984

INTRODUCTION

This Semi - Annual Technical Report covers research carried out by the Advanced Teleprocessing
Systems Group at UCLA under DARPA Contract No. MDA 903-82-C-0064 covering the period
from October 1, 1983 to March 31, 1984. Under this contract we have three designated tasks as
follows:

TASKI. DISTRIBUTED COMMUNICATIONS ACCESS

The general problem of sharing a multi-access broadcast distributed sys-
tems among a set of competing users will be studied. General issues in-
volving exhaustive communications, start-up problems and refined
models to manifest some more realistic phenomena in these systems will
be studied. Applications to packet radio systems and large survivable
networks involving the study of tandem networks, multi-hop networks,
one-way communication links, correct reception of more than one simul-
taneous transmission and mobility will be included. Further applications
will include the study of very high bandwidth channels and/or very long
propagation delay systems, multiple token systems and compound
hierarchical network structures. "-

TASK H. DISTRIBUTED PROCESSING

The interplay between distributed communications in a broadcast en-
vironment and processing of distributed data will be studied. For exam-
ple, the effect of merging sorted lists in a broadcast environment, as well
as finding properties of elements in these lists, will be studied. Con-
currency in multiprocessor systems will be studied in order to investigate
performance in terms of response time and speedup factors for various
graph models of computation. Connection architectures for multiproces-
sor systems will be investigated as well. One application here is the
structure of the processing and communication architecture for super-
computers.

-..'..". " ". ".. .-.. '. " .'..'~~~~~~~~ ~~..... , . . . .... ... . ..' -.. ."., -.. -- .. . .- -. - . . ..- ,- .. - :".-.'
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TASK!!!. DISTRIBUTED CONTROL AND ALGORITHMS

Routing, flow control and survivability in large packet radio networks as
well as in public data networks will be studied as control algorithms in a
distributed environment. Measures of performance, including
throughput, response time, blocking, power, fairness, and robustness wIl
be applied to these systems. Distributed algorithms for finding shortest
paths, connectivity, loops, etc. will be studied. The effect of node and
link failures, limited amounts of memory at each node arnd restricted
channel capacity for communications will be investigated. The effect of -

network failures and delays on distributed data base management systems
will also be studied.

A major contribution of our research during this reporting period is contained in Reference 4 list-
ed below, namely "Concurrency in Parallel Processing Systems", by Kenneth Kung. this disserta-
tion was supervised by Professor Leonard Kleinrock (Principal Investigator for this research).

A model for parallel processing is introduced using the graph model of computation. Four key
classification parameters are considered: the input (either a fixed number of jobs, k, or a random
arrival process with rate %jobs/scc); the structure of the graph (either a fixed graph structure, G, or
a random graph, G'); the service time per task (either a fixed service time, X, or a random service
time, X'); and the number of processors (either a finite number, P, or arn infinite number P=c)

For the cases (k, G, Z% ,P= and , GX,P=c) we set up a Markov chain for the number of
concurrent tasks which solve for the equilibrium probabilities. From this we also find the mean
system response time and the speedup factor. Using simpler methods, we place upper and lower
bounds on the speedup. For the case (k, G, X, P < *a) we also bound the speedup for the special
case of diamond-shaped process graphs.

For random graphs with fixed service time (k, G*, ,P= -c), we find that, as N, the number of
tasks per job, approaches infinity, the speedup simply approaches 2! For random service times,
we find that the speedup, S, is bounded by ±:5 S :52.

We also present results for the optimal number of processes, P, for diamond- shaped graphs for
the case (k, G*, X,P < o) where the objective is to maximize "power" defined as throughput divid-
ed by response time.

The issue of communication overhead is also addressed in this work and we study the effect of7
this overhead on the gains that are achieved from parallel processing. The entire dissertation is
reproduced as the main body of this report. T7he following list of research publications summar-
izes the results of the semi-annual period and the abstract of each paper is given along with the
reference itself.
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RESEARCH PUBLICATIONS

Kleinrock, L. and G. Akavia, "On a Self Adjusting Capability of Random Access
Networks", IEEE Transactions on Communications, January 1984, Vol. Com-32, No. .
1, pp. 40-47.

We consider a distributed communication network with many terminals
which are distributed in space and wish to communicate with each other
using a common radio channel. Choosing the transmission range in such
a network involves the following tradeoff: a long range enables mes- S.--
sages to reach their destinations in a few hops, but increases the amount
of traffic competing for the channel at every point.

We give a simple model for the per-hop delay in random access net-
works, analyze this tradeoff, and give the optimal transmission range.
When choosing this optimal range, as a function of specified traffic and .
delay parameters, networks demonstrate an important self-adjusting capa-
bility. This capability to adjust to traffic makes heavily loaded networks
far better than centralized systems (in which all messages must reach one
common destination).

Dividing a terminal population into power groups can improve any ran-
dom access system, especially when the traffic is split between groups in
an appropriate way, which we demonstrate. But since networks are hurt
by destructive interference less than centralized systems, it is harder to
improve them. Using power groups can significantly improve centralized
systems, but will lead to a smaller relative improvement in networks.
Decomposing the system into a hierarchy of ALOHA levels, with only a
small population contending at the top level, can improve centralized sys-
tems but does not improve networks.

2. Takagi, H. and L. Kleinrock, "Optimal Transmission Ranges for Randomly Distri-
buted Packet Radio Terminals", IEEE Transactions on Communications, Vol. Com-32, ..
No. 3, March 1984, pp. 246-257.

In multihop packet radio networks with randomly distributed terminals,
the optimal transmission radii to maximize the expected progress of
packets in desired directions are determined with a variety of transmis-
sion protocols and network configurations. It is shown that the FM cap-
ture phenomenon with slotted ALOHA greatly improfes the expected
progress over the system without capture due to the more limited area of
possibly interfering terminals around the receiver. The (mini)slotted non-
persistent carrier-sense-multiple-access (CSMA) only slightly outper-
forms ALOHA, unlike the single-hop case (where a large improvement is
available), because of a large area of "hidden" terminals and the long
vulnerable period generated by them. As an example of an inhomogene-
ous terminal distribution, the effect of a gap in an otherwise randomly
distributed terminal population on the expected progress of packets cross- . .

ing the gap is considered. In this case, the disadvantage of using a large - " -

transmission radius is demonstrated.

......... ...... :



3. Takagi, H. and L. Kleinrock, "Diffusion Process Approximation For The Queueing
Delay In Contention Packet Broadcasting Systems", 2nd Int'l Symposium on the Per-
formance of Computer Communications Systems, IBM, Zurich, March 21-23,1984.

The average packet delay (including queueing and randomized re-
transmission delays) for a finite number of random access users of a
channel with infinite buffers is studied. For a class of contention-type
memoryless protocols (including ALOHA and nonpersistent CSMA), a
diffusion process approximation for the joint queue length distribution is
formulated, and on the basis of its stationary solution, two approximate
mean delay formulas are proposed and examined against simulation.

4. Kung, Kenneth Ching-Yu, "Concurrency in Parallel Processing Systems", Ph.D.
Dissertation, Computer Science Department, University of California, Los Angeles,
March 1984.

. .... ...... ...... .....
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ABSTRACT OF THE DISSERTATION

Concurrency in Parallel Processing Systems

by

Kenneth Ching-Yu Kung

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1984

Professor Leonard Kleinrock, Chair

The idea of multiprocessing has been with us for many years. We would like to know,

however, how much gain (i.e.,speed-up) is really achieved whe. multi-processors are used. In

this dissertation, we model a computer job as a Directed Acyclic Graph (DAG), each node in the

DAG representing a separate task that can be processed by any processor. Four parameters are

used to characterize the concurrency problem which results in 16 cases. The four parameters

are:

(I. How the jobs arrive: either a fixed number of jobs at time zero or jobs arriving from a

Poisson source;

2. the DAG: either the same for each job or each job randomly selecting its DAG;

3. service time of each task: constant or exponentially distributed;

4. the number of processors: either a fixed number or an infinite number (infinite number

of processors meaning that whenever a task requires a processor, one will be available).

For all cases studied, we define a common concurrency measure which gives a com-

parison of how much parallelism can be achieved. The concurrency measure is obtained exactly

for several cases by first converting the DAG into a Markov chain where each state represents a

possible set of tasks that can be executed in parallel. From this Markov chain, and by utilizing

a special feature in the chain, we are able to find the equilibrium probabilities of each state and

the average time required to process a single job.

pp
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We also find upper and lower bounds for the concurrency measure for certain cases stu-

died. The upper bound is found by synchronizing of the execution at various places in the

DAG.

We present two algorithms for assigning the tasks to processors. One algorithm minim-

izes the expected time to complete all jobs while the other algorithm maximizes the utilization

of the processors.

I

The communication cost between any two tasks that reside on different processors is

modeled as a task. We study the effect of the communication costs on the gains that are
achieved from multi-processing.

xiii
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CHAPTER I

Introduction

1.1 Distributed Processing In a Network of Processors

Central processing units have been the backbone of the computing centers for many
years. These machines are generally very powerful but also very expensive. Communication
networks transfer data among these central processors so that the processing power of several
processors may be combined and the processing resources may be shared with users of other
sites. But researchers recognize the fact that even though the processing capabilities of each

machine are shared by all users, the large communication time between hosts in comparison
with memory access times often precludes the parallel execution of the same job on more than
one machine if the networks are slow and/or costly. Thus the processors are often loosely cou-
pled to each other with this type of communication network.

Many applications, however, require the high speed capabilities not achievable with a
single serial processor. The quality of the answer a processor returns in the areas such as
meteorology, cryptography, image processing and sonar and radar surveillance (HAYN82,
POTT83, ROSE831 is proportional to the amount of computation performed. There are only
two avenues to improve the performance. One is to speed up the processor by having faster cir-
cuits, reducing the logic levels, reducing the cycle time per operation, having high speed algo-
rithms, and having better storage organization. The other method is to try to handle more than
one task within a job simultaneously. The latter is the direction taken by the Japanese Fifth

Generation Computer project.

But despite the impressive speed of many of the latest model computers, their basic
architecture limits them to being serial machines and hinders their usefulness to computationally
intensive problems. With the recent advances in the design and fabrication of VLSI circuits, a
computing center consisting of up to tens of thousands of computing elements can be built. If
we can decompose a large problem into many small concurrently executable tasks and allow
several processors to work on them in parallel, we can improve the processing speed not attain-
able by serial machines.
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Of course there is the complexity of multiprogramming and the low utilization associ-

ated with a processing center with so many processors.

Distributed processing can be defined as an architecture that has no master/slave rela-

tions among a set of processors. Instead, all processors are equal and each can access any net-

work resources without the interference from centralized controllers IPARR831.

Each processor in a distributed processing network, therefore, needs the same basic

software tools:

• the operating system software

the application software

the database access method and query language

- .a dictionary defining the location and structure of the data in the network

- a directory defining the structure of the network

--. a standard message protocol.

In order to distribute the processing of one function among various machines, these pro-

cessors must be connected in some fashion. Even though there is still some communication

delay, the delay between processors in a locally interconnected switch is much smaller than that

in long haul communication network as described before.

Many issues are involved in distributed processing among a network of processors. In

particular, the following set of problems must be addressed:

. 1. efficient multi-access communication protocols

2. management of the databases - centralized or distributed

3. network management - file directories [POPE81I, network resource directories

4. security and privacy ISCHE83-

5. reliability IAVIZ81, MAKA81, NG80,

6. topology JUPFA821
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7. scheduling

8. language for parallel processing [HOLT78, SCHU81, HASE75, HASE771

9. concurrency in processing jobs

In our research we concentrate on the last item in the above list. Concurrency of the

jobs is not very well understood because the machines have often been used in a serial fashion

and therefore the possibility of parallel execution in a single job has not been extensively

explored.

If we have a large number of processors and these computing elements can be organized

in such a way that they can cooperatively solve a single problem or attack many problems

simultaneously, tremendous speed improvement can be realized. We recognize that in addition

to the service time of jobs there are overhead associated with the organization of these proces-

sors. But this overhead is limited to the organization of the processors assigned to the jobs

rather than the organization of all processors. Besides the advantage of the speed, this type of

system offers a distributed processing environment with increased reliability, availability, expan-

dability and better utilization of resources.

In order to take full advantage of these cooperating processors, we must understand the

parallelism within computer jobs and systems. We wish to find out just how much speed up is

achievable, how do we really coordinate these processors, and whether the communication

between the processors is too costly for distributed processing. At the same time, the develop-

ment of programming languages for parallel processing must proceed at a faster pace. Most of

the existing languages do not allow parallel processing. To pick out the concurrency in these

programs requires extensive preprocessing. Since most of the algorithms are not sequential, once

the language for parallel processing is available, it will be easier to produce programs for the

multiprocessor environment.

1.2 Existing Examples

The idea of performing more than one operation simultaneously is at least 140 years old

'KUCK771. In an October 1842 publication Menabrea describes Babbage's lecture IMORR61I:
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when a long series of identical computations is to

be performed, such as those required for the formation of

numerical tables, the machine can be brought into play so as to

give several results at the same time, which will greatly abridge

the whole amount of the processes."

So, clearly, the idea of parallel processing has been around for quite a while.

Since the early 1960's, there have been many attempts to speed up execution by giving

the hardware some multioperational capability. The IBM 360/91 is a pipeline machine which

operates on arrays of data. ILLIAC IV [BARN681 was a parallel array machine with 64 process-

ing elements. CRAY-i was designed specifically for vector array processing [KOZD80. The

CRAY-I's Fortran compiler is designed to give the scientific user immediate access to the

benefits of CRAY-I's vector processing architecture. This compiler vectorizes the innermost DO

loops such that they can be executed in parallel. IENSL771 contains a list of multiprocessors

and parallel systems in chronological order for the years form 1958 to 1977.

A good example of using ILLIAC IV is to find the solution to partial differential equa-

tions. The difference method defines the problem on a coordinate system with given boundary

values. Each grid point then uses the weighted average of the values from its neighboring grid

points to find its own value. Since each grid point at each iteration can be processed con-

currently, we can define each grid point at each iteration to be a separate task. Usually several

of these tasks are assigned to one processor. Solutions are found when the difference of the
value for each point between two consecutive iterations is smaller than a predetermined value or

the solution is not obtainable due to the unstability. .

1.3 Summary of Results

In Chapter 3, the concurrency problem is model by 4 parameters; they are:

1. How the jobs arrive: either a fixed number of jobs at time zero (k) or jobs arriving from

a Poisson source (X)

2. The DAG: either the same for each job (G) or each job randomly selecting its DAG (G')

3. Service time of each task: constant (z) or exponentially distributed (xi)

4

• , ~~~~~~~........ ......-... • .........--. •....-.- ..-.. -,.-...... ,.



4. The number of processors: either a fixed number (P) or an infinite number (P -- c)

A process graph is defined (in Section 3.2) as a directed acyclic graph where the nodes represent

the tasks within a job and the edges represent the precedence relationships among the tasks.

We use the shorthand notation "a, 8, -y, 6" where a, , 1y, and 6 represent how the jobs

arrive, the type of DAG, the service time of each task, and the number of processors, respec-
tively. For example, k, G, z, P - oo is shorthand notation for a system with a fixed number of

jobs at time zero, a fixed process graph, a constant service time for each task and an infinite

number of processors.

From these four parameters, we have sixteen separate cases as shown in Figure 3.6.

Besides the two trivial cases (k, G, z, P = oo, and X, G, z, P = oo) discussed in Section 3.5, the

case of fixed process graphs is discussed in Chapter 4 and in Chapter 5 we discuss random pro-

cess graphs. For all the cases studied, we look for a common parameter - the concurrency meas-

ure, a, which is defined (in Section 3.3) as the average time a single job spends in the system

using P processors divided by the average time a job spends in the system when only one pro- --

cessor is used.

1.3.1 Flxed Process Graphs

For the k, G, z', P co c case (Section 4.2), we develop a method for finding the average

system time. Because the number of processors is assumed to be infinite, the results obtained

are independent of the number of jobs, k. The process graph G is first converted into a Markov

Chain by Algorithm CPM (Section 4.2.1.1) where each state represents a possible set of tasks

that can be processed in parallel. Since we know the rate out of and into each state, we have a

set of balance equations. If we put these balance equations in a matrix format, we have a lower

triangular matrix which can be inverted easily to obtain the equilibrium state probabilities.

From these equilibrium probabilities, we can find the average system time and the concurrency

measure a.

Bounds on the concurrency measure are relatively easier to obtain than the exact value.

An upper bound can be found by forcing the execution of a job to synchronize at each level of

the process graph. No tasks in a level can start execution until all the tasks in its previous level

have completed execution. We first study the average time required for a node to wait for all

its predecessors in the previous level to complete. In each level there exists a node which has

the maximum number of edges entering it. Therefore, no tasks in this level can start executing

............................... ....



until all the predecessors of this task have been completed. By summing the time required at

each level to process the task with the maximum in-degree, we obtain an upper bound on the

average system time.

A lower bound is simply the average processing time of a task multiplied by the number

of tasks in the longest path from the initial node to the terminating node.

For the X, G, z, P -oo case (Section 4.3), the results obtained in Section 4.2 can be

applied directly. With an infinite number of processors, once a job enters the system, it is

immediately served and no waiting time is required.

We briefly discuss the case of k, G, z, P < co using the Stochastic Petri Nets model in

Section 4.4. Any process graph can be converted into a Petri Net. A 'place' representing the

available processors is added to the Petri Net such that at each 'transition' if a processor is

needed, a 'token' is obtained from this place, and whenever a transition with a processor token

finishes, the token is also returned to this place. By using the analysis provided by Stochastic

Petri Nets theory, we can ind the average utilization of the processors.

In Section 4.6, we study the assignment problem for the case of k, G, z, P < oo. Two

scheduling algorithms are analyzed for diamond-shaped process graphs - one algorithm gives the

worst case assignment and the other algorithm gives the best case assignment. By studying the

ratio of the average system time using the worst algorithm and the best algorithm, we find that

the ratio between the two assignments is not large (less than two). Therefore, if we ,tl i for

random assignment (an available processor is given to any task that is ready to execute), the

resulting average system time will fall in between the two boundary values.

1.3.2 Random Proces Graphs

In Chapter 5 we look at some o!' the properties of random process graphs. We find (in

Section 5.2.3) that the number of arrangements for N tasks with respect to the number of levels

may be approximated by a Gaussian distribution (recognizing that this approximation permits a

negative number of levels, which is clearly impossible). Since no arrangements can have less

than one level, we assume the probability of any arrangement with less than one level equals to

zero. In other words, most arrangements have -- levels as N becomes large. Using the

Chernoff bound, the tail probability of this distribution is found in Section 5.2.4.
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In the case k, C., z, P - oo, as N approaches infinity, where N is the number of tasks
N

within a job, we find the average system time approaches the value of - - multiplied by the
1 T

average task service time, and the concurrency measure approaches . .

For the case k, G*, z', P - co, we found and proved an arrangement that will provide

the upper bound for system time over all arrangements with N nodes. An upper bound is

presented in Section 5.4.1.1 while a lower bound is presented in Section 5.4.1.2. Both bounds1are expressed probabilistically; they are approximately < S < whr S-ste.vr

age system time of a job, N is the number of tasks within a job and - is the average service

time of a single task.

If the number of precedence relationships is also given, then we define the minimally

connected proccee graph in Section 5.4.2.1. M, is defined to be the minimum number of edges

required to fix all the nodes of a particular process graph at their proper levels. We also give

expressions for Maz M, and Min Mc for any process graph with N nodes and L levels. Using this

concept, we give an upper bound in Section 5.4.2.2. Section 5.4.3 then compares the two upper

bounds obtained in Section 5.4.1.1 and 5.4.2.2.

In Section 5.5, we try to find the optimal number of processors a diamond-shaped pro-

cess graph in the case k, G, z, P < oo will require such that a function called power is maxim-

ized. Power is defined to be the average utilization of the processors divided by the normalived

average system time (KLEI79I. An expression is provided for the optimal number of processors

per job.

Section 5.6 briefly discusses two loose bounds for the average system time for the case

k, G, z, P < 00.

1.3.3 Communication Overhead

For the case k, 0, x~', P - 0, we study the effects of the communication overhead

between processors. We add a communication task between any two neighboring tasks in G

that do not reside on the same processor. The average time for the communication tasks is

- . expressed as a multiple 'a' of the average service time for a regular task. Using the same tech-

* nique presented in Section 4.2, we find the resulting average system time as a function of 'a'.
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In Section 6.2, we limit the number of processors to P, and study the effects of the com-

munication overhead with various values of P on a process graph. By varying the parameter 'a',

we obtain a family of curves for the average system time versus the number of processors.

In Section 6.3, we put a further condition on the communication overhead by allowing

only one communication bus. Thus, only one communication task may be transmitting at any

-. particular instant. We modify the technique of Section 4.2 for the analysis required in this sec-

tion.
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CHAPTER 2

Background and Related Work

2.1 Brief History

In the late 50's, relatively few people knew how to work with computers, and an entire

computer was dedicated to one person at a time. If one needed to use the computer, he would

reserve a time slot, and the machine during that time period would be dedicated to him. Each

user waited for an empty time slot in order to use the machine (i.e., the sign up sheet was the

scheduler). The advantage of this concept was that each user had the full processing power of

the machine while he was using it. The drawback, on the other hand, was the low utilization of

the processor since users spent great deals of time thinking.

As the machine became faster and more costly, it was not economically feasible to

maintain the previous arrangement. To utilize the machine more efficiently, users were required

to punch their computer jobs on cards and submit them to a computer operator. The computer

operator would then schedule jobs by putting the cards of different jobs into the card reader in

some predefined order. In this manner, the computer was kept busy most of the time, but the

turnaround time for jobs could not be predicted and could vary from several hours to several

days.

. m .

time had the highest priorities and long batch jobs had the lowest priorities. Because the

memory was also shared among the users, paging and the technique of virtual memory were

developed. Various methods of sharing the processor were studied and used to increase the
throughput and to lower the average waiting time of jobs.

An expensive and powerful central processing unit has several drawbacks. The over-

* head of the operating system software in controlling a multi-programming environment is high.

Jobs are constantly being swapped in and out of the high speed memory. Such operating sys-

tems re also very cumbersome, as witnessed by the fact that there are still errors in the

IBM/MVS operating systemdespite many releases.
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The central processor also has the problem of reliability and availability. When the

processor in a single processor machine goes down, the entire machine is not available to users.

A few computer manufacturers have tried to solve this problem by introducing the fault-tolerant

machine (e.g., NONSTOP MACINETM by TANDEM). It is comprised of several processors

and memories with the operation of one processor backed up by another processor; so, whenever

one processor goes down, ita twin processor will start up right away.

This leads to the multi-processor environment that we are addressing. As computer

jobs enter the system, they are processed by one or more identical processors. Thus, the system

will be running even though several processors might not be available, and it is more reliable

since any processor can process all the jobs. As the price of the VLSI keeps on dropping, it will

be possible to build a computer center consisting of large numbers of processors. They are many

difficult issues related to multi-processors as mentioned in Chapter 1, but we would like to

explore the concurrency within the jobs and to take advantage of multi-processing for improve-

meat of system performance.

2.2 Graph Model of Behavior

Our representation of jobs, as described in Chapter 3 and used throughout the later

chapters, is similar to the UCLA Graph Model of Behavior (GMB), which uses a control graph

and an associated data graph. The control graph is, essentially, a variation of the Petri Net

because the edges represent conditions and the circles the transitions. Logic expressions are

assigned to the sets of both input and output edges. These expressions are made up of 'and' and
'or' logic. Computation is simulated by the movement of tokens from edges through nodes to 0"

edges. The logic expressions determine from which input edges the tokens are removed and to

which edges the tokens are delivered. Each processor is associated with one or more operations

in the control graph. When an operation is initiated by the control graph, the processor associ-

ated with that operation executes its procedure. For each operation, the data graph provides

the locations for both the input data and the stored output data. After the control graph has

been determined, analysis of the GMB is carried out by simulation. This requirement for simu-

lation places a large overhead on the analysis of each problem. Part of our work is based on a

whole class of jobs instead of an individual job; hence, it is easier to obtain system parameters %

and to generalize for a large number of jobs.
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In a series of works on GMB, a sequence of researchers [ESTR63, MART66, MART67a,

MART67b, MART67c, MART69, BAER68, BOVE68, RUSS691 associated various types of input

and output logic with each node of a directed graph model identified the random variables

which arise as a result of the application of programs to different sets of input data and applied

the model to evaluation of the effectiveness of parallel processor systems. In the course of these

studies, they evolved algorithms for the transformation of cyclic graphs to acyclic graphs, main-

taining equivalence of the graphs in the sense that mean path length is preserved for any

transformed cycle IMART67bI. They developed effective algorithms to calculate the probability

of ever reaching a given node in the graph [BAER701 and formed upper and lower bounds on the

number of processors required for maximum parallelism [MART69, BAER69I. Fernandez

[FERN721 transformed the acyclic graphs by adding precedence relationships in such a way that

the execution time of the resulting graph does not change but utilizes the minimum number of

processors. Using GMB, Ramamoorthy IRAMA721 also scheduled the tasks such that the total

execution time is minimized, and the minimum number of processors required to realize this

schedule is obtained.

2.3 Related Work

2.3.1 Petrl Nets

* .Petri Nets [PETES1] were designed to model systems with interacting concurrent com-

ponents. They are widely used in the area of software verification. By modeling a program

using a Petri Net and generating all possible 'markings,' we can detect the existence of

deadlocks. By themselves, though, Petri Nets ignore the random time duration between the

firing of two transitions, i.e., the time interval between two markings of a Petri Net. In

[RAMA80], a constant time unit is associated with each transition. The performance is meas-

ured by finding the minimum cycle time, which is the time required to process a job. Molloy

jMOLL8IJ introduced the Stochastic Petri Net (SPN), in which a random variable representing

the firing delay is assigned to each 'transition." Each marking in the Stochastic Petri Net, which

represents a set of concurrently active tasks, is associated with a state in a Markov chain. By

solving for the state probabilities in this Markov chain, we can obtain the density of 'tokens' in

each place or each marking. In Chapter 4 we will show how this model can assist us in solving

for some system parameters.
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A disadvantage of the SPN is that each marking reachable from the initial marking is a

state in the Markov chain. As the number of tokens increases, the number of states in the Mar-

kov chain grows at an even faster rate, making the SPN analysis very difficult. For this reason,

the SPN cannot model a system with open arrivals, where the number of jobs is undetermined

or the number of tokens and states is unlimited. Even when analysis is possible, a generaliza-

tion of the result obtained for one specific job to other jobs is not possible.

2.3.2 Automatle Detectlon of Parallelism

Parallelism in programs may be either explicit or implicit. Explicit parallelism is

specifically indicated by programming features such as COBEGINICOEND.

Implicit parallelism is the parallelism that exists in the algorithm but is not explicitly

stated. Some common techniques used by compilers for detecting implicit parallelism are:

1. Loop Distribution

Sometimes the statements within the loop may be executed in parallel. This idea was

introduced by Muraoks IMURA71I and later was implemented by Kuck

[KUCK72,KUCK74] in their FORTRAN program analyzer to measure potential paral-

lelism in ordinary programs.

2. Tree Height Reduction

By making use of the associative, commutative and distributive properties, compilers

may detect implicit parallelism in algebraic expressions and produce object code for

multiprocessors. For example,

can be replaced by

and

a. (bec*d+c)

can be replaced by

a*beced+ *e

Assuming that only associativity and commutativity are used to transform expressions,

Baer and Bovet (BAER68 gave a comprehensive tree-height reduction algorithm.
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Later, Beatty [BEAT72 showed the optimality of this method.

In IRAMA69], a survey of techniques for recognizing parallel processable streams in FORTRAN

programs was presented. These algorithms are primarily concerned with detection of parallelism

within the arithmetic expressions. The problem of protecting common data was recognized. If
two tasks are executed in parallel and they both access the same data cell, then different orders

of execution will possibly result in different answers.

Russell [RUSS69I developed an interactive system in which a graphical display of poten-

tial parallelism in Fortran programs together with detected bottlenecks, is presented for further

analysis by the use.

In fKUCK771, the possibility of speed up in FORTRAN programs is also studied. Three

levels of parallelism were discussed. They are:

1. Parallelism within a line of code

This referred to the reduction of the tree height in an arithmetic expression.

2. Parallelism within a program

Concurrent execution of the loops in a program was explored.

3. Parallelism within the hardware

The hardware organization of pipeline and array processors was discussed.

Several specific FORTRAN programs were analyzed IKUCK72,KUCK741. They showed the

speedup of the programs and the efficiency and utilization of processors for each of the pro-

grams. All of the programs resulted in some speed up, most of them by a large amount. The

utilization is, as expected, quite low. But most interestingly, they conclude that, as the number

of processors increased, the speed up is more than the logarithm of the number of processors

predicted by Amdahl in [AMDA67].

13
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2.3.3 Multlprocessor Hardware Organization

One of the problems in the design of a multiprocessor system is determining the means

of connecting the multiple processors and the I/O processors to the storage units.

The four common multiprocessor system organizations are:

•. Bus

The bus organization uses a single communication path (such as Ethernet) between all
functional units - processors, storage units and 1/0 processors. Multi-access protocols

are required to share this common transmission medium.

2. Crossbar-switch

In this organization, there is a separate path to every storage unit. The hardware must

be capable of resolving conflicts within the same storage unit.

3. Shuffle/Exchange ITHAN811

In the Shuffle/Exchange network, there exist log 2N columns of routing switches connect-

ing N processors to N memory modules. Each column consists of N/2 two-input, two-
output switches. Figure 2 shows an example of this organization with N = 8.

4. Hierarchical ITHAN81'
A hierarchy is imposed on the set of processors and memory units. In such a structure,
each processor has immediate aceess only to part of the system memory. Any reference

to remaining memory must be handled by a higher level processor.

Two examples of this organization are C-mmp and Cm*. C-mmp
ISIEW78a,SIEW78b,WULF0 is a 16-processor system consisting of PDP-11/40 mini-

computers. The processors share 18 storage modules through a crossbar-switch matrix.
Cm' ISIEW78a,SIEW78b,HAYN82b consists of 50 LSI-11 microprocessors. It is con-
structed from processor-storage pairs called computer modules. Each of these is referred
to as a Cm. Cm's are grouped into clusters, and clusters are connected by intercluster

busses.

1.
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* 2.3.4 Theory of Branching Processes

The theory of the branching process [l-ARR631 deals with the problem of taving one

node initially, with probability, pk, that there will be k descendents at each iteration, i, for each

of the nodes on the (i-l)th level, k =a 0, 1, 2, . .It deals with the expected number of des-

cendents at the ~it iteration would be, and what would be the probability that, after i iterations

for a large i), there would be no descendents left. The tree of descendents obtained is similar to

the structured process graph described in Chapter 4. Since the number of descendents at each

level is random, the resulting tree can also be thought of as a random process graph (defined in

Section 3.3).

The generating function of the number of descendents at the 0t iteration was found to

be [f(z))k, where k is the number of descendents at the (i-.1)"h iteration,

and z is the transformation variable. The expected value and the variance of the number of

nodes at the 0i iteration have been found.

Two problems, however, prevent this model from representing the tasks in computer

jobs. One is that there exists the possibility that the descendents, will not die out. This

corresponds to the fact that a computer job will not terminate. If the descendants do die out,

another problem is how to merge the task having no descendants together. This corresponds to

the question of how, after individual tasks are completed, the results are to be incorporated into

each other to form the final solution.

2.3.5 Bounds on the Average System Time

In fRoBI7oj, bounds on the average system time of a tree-shaped process graph were

obtained, using arguments similar to those that we bave used in Section 4.3.

Since the process graph is in the form .-f a tree, there exist distinct paths from each task

toward the root of the tree (the terminating task). Let C1, C2 . C. be all the paths from

* leaf tasks (i.e., tasks without any precedence relationships entering it) to the terminating task,

* . and let H, be the set of all tasks at level i, for 1 < i < L, where L is the number of levels in the

* . tree. Assume that the number of processors is infinite and that each task T', has a random pro-

cess time equals to 1Y. Then, the expected time to process this process graph, S, is bounded by

16
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In Section 4.2.2, we develop this bounding technique for general process graphs (using

the concept of a "structured process graph") instead of restricting to the special case of a tree-

shaped process graphs.

2.3.6 Task Scheduling

There are many scheduling algorithms in the literature. However, the majority of them

deal with the single processor scheduling problem. In this section we look at some algorithms

that discuss the scheduling problem in the multiprocessor situation.

Price [PRIC83] discussed a shortest path algorithm which is used to solve the scheduling

problem of assigning tasks to processors. First, a distributed algorithm for finding the shortest

path from one node to all other nodes in a directed acyclic graph (DAG), using as many proces-

sors as needed, is presented. At the i!th iteration of the algorithm, the shortest path from the

root to node j, ) is computed as the minimum of the distance obtained at the (i-1)" iteration,

---), or the distance from other nodes at the (i-I)t iteration plus the edge cost to nodej, ef;,

where k is a neighbor of node :

0 )  min (d-'), dP')+e ),
k

This computation can be performed in parallel at each node. For an N-node DAG, this algo-

rithm will find the shortest path to all nodes at the end of the MA iteration. To use this algo-

rithm to solve the task assignment problem, we execute the following changes. Suppose e,, is

the cost of executing task i on processor j, and c,k is the cost of communication incurred if task i

and task k reside on different processors. The desired assignment IPRIC81, PRIC831 is one which

minimizes

N P N N N-1 P N

C - E e,, ,, + E c, - E E E "a0= /1 mini X m- l k-l "=I /tMl - ."

P
. where z,, = 1 if task i is assigned to processor j, z, = 0 otherwise, E z, - 1 for all i (each

task i is assigned to exactly one processor) and P is the number of processors.

17

S•.. . . .. ... ...
-. -. . . .-.- ..'- -• . . .. ... . .•- .. .. -." "'""-"" -- '""--:".



If the process graph is tree-shaped, then a DAG is generated from it by creating N*P

nodes

11,11" 11,P12,11 ... 12, • [N,1 • [N,PJ

where node [i,j] represents the assignment of task i to processor j. In addition there is an initial

node [01 and a terminating node [t]. Edges are generated by the following rule:

2"." edges from [01 to [i1 are labeled with e,, where i corresponcus to the root task in the pro-

cess graph.

- edges from [IQ to JkJl are labeled etr

edges from [iJ] to [r,qj are labeled (C,, +c,,).

- edges from [iJ, to [i,kj and from 1i,.1 to [Q,1 do not exist.

-* edges from [1'1 to [t! are labeled with the value 0 for every task i that is a terminal task

in the process graph.

A specific assignment of N tasks to the P processors consists of a path from node [01 to node It,

and the optimal assignment is the path that minimizes the objective function C.

Stone ISTON77 uses the Network Flow Algorithm to solve for the optimal solution of

assigning tasks to two processors. The N tasks are so connected that the edge weights represent

the cost of inter-task references (the communication costs) when the two tasks are assigned to

different processors. Next, two nodes, S, and S2, which represent processors P and P2, are con-

nected to each task with the edge weight representing the cost of executing this task on that

processor.

Assuming that all the edge weights are the capacities in a flow network, Stone finds the

maximum flow from S, to S2. A cut set is found which divides the tasks into two sets. The

tasks in the same set as S, are assigned to processor P1, and the other tasks are assigned to pro-

cessor P2.

Although this method does provide the optimal solution, it is not easy to generalize into

cases with more than two processors. In the case where P is very large, this method is, indeed,

very difficult to apply.

18
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Van Tilborg IVANT81I discussed the Wave Scheduling technique. The processors are

organized into a tree-shaped hierarchical structure with the 'worker' processor at the leaves and

manager' processors at the higher levels in the control tree.

Assume that a job requiring S processors enters any processor (either worker or

manager). If this is a worker processor, it will pass the request to its manager. The manager at

this level will try to assign S tasks to the workers under its control that are not busy. If it can-

not schedule a job of size S, the job is passed up the control tree one level at a time until a

manager can find at least S workers under its control that are not busy and assigns the workers

to the tasks. Because of the communication delay, the manager might not have updated infor-

mation regarding the busy status of all the workers under his control; therefore, the manager

will always try to assign the S tasks to P processors where P is slightly larger than S. The

difficulty is then to estimate the value of P.

Lee [LEE771 studied the problem of optimally assigning tasks to processors by minimiz-

ing a cost function, which is the sum of two parts:

. 1. processing cost of a task on the processor assigned;

2. communication cost, which is the product of ihe volume of data to be transferred and

the distance of the two processors measured by the number of hops or the physical dis-

tance.

He then discussed several assignment algorithms that minimize the above cost function for tree-

shaped process graphs and more generalized process graphs.

Except for the algorithms discussed in [LEE77I, none of this previous work included pre-

cedence relationships among the set of tasks. In Chapters 4 and 5, we do incorporate pre-

cedence relationships among the tasks into the scheduling algorithms.

2.4 Discussion

In this chapter, we introduced some background information on why multi-processor

systems have become more important. We looked at some results obtained from the analysis of

the Graph Model of Behavior and some previous attempts which take advantage of parallelism

existing in programs. Some multi-processing hardware organization(s) and the scheduling prob-

lems on multi-processors were also studied. As summerized in Section 1.3 we extend these

results to our model of computer jobs and find the speed up achievable in the multi-processor
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'~....'-.-. . .. ".'.,.,,...,-. -.-.-..... . •...._- . i- _
. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



* h * . . . . ., *

environment.

4.4.

4.

4.

20

. - 7. -. -
. .. . . ..*-*>- \~'..4/./:.:~ ~ - -. -

'a.- 
* *j 

*. 
* -a.-.'. * * -,.-......

£'C.at.? rVS- r **.*.***~***** 
-



CHAPTER 3

A General Model

We define our system to be a set of processors plus a queue with unlimited waiting

room. In the case where there are a fixed number of jobs in the system, all jobs are initially

present; otherwise, jobs arrive at the system by some random arrival process. Each job brings

to the system a set of tasks represented by a process graph (described in section 3.2), and each

task requires processing by a resource (described in section 3.1). A job departs our system after

its final task has been completed. The system time of a job is defined as the interval from the

time of arrival until the completion time of the last of its tasks.

3.1 Resources 7

The resources studied here consist of a set of identical processors, connected via a local

communication network, and each capable of independent operation on a single task. In this

dissertation, we concentrate on the problem of task assignment; we defer questions regarding the

types of connection networks most suitable for parallel processing communications, the amount

of storage required for each processor in order for it to process the largest task assigned to it,

the amount of communication bandwidth necessary to keep the communication time small in

comparison to the processing time and the overhead of this communication to the references

IMETC76, BUX81, KIES81, LELA82I. Of course, we recognize that there will be higher com-
munication delay if the tasks of the same job are assigned to processors far apart in the proces-

sor network. In Chapters 4 and 5, however, we assume that this communication cost is free (or
as an approximation, that the average delay is incorporated into the processing requirement of

each task); in Chapter 6 we bring the communication cost into the model.

The processors are identical in terms of their capabilities in processing speed and
storage. Usually, the total number of processors is assumed to be a fixed constant, P. In some

cases where we have enough processors to keep all executable tasks busy, we assume P is

infinite.

21
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3.2 Process Graph

Each computer job is represented by a set of tasks, T, and a partial ordering of these

tasks (given by a set of precedence relationships). We represent a task by a node and represent

a precedence condition, where task i must be completed before task j, by a directed edge from i

to j, denoted by (i,j). In the following, all directed edges point downward in the graphs; there-

fore, we will not put the arrows on the edges. In the following discussion, we distinguish neither

between nodes and tasks nor between edges and precedence conditions.

We use the directed acyclic graph to represent the tasks in a computer job. Each node

is a task that requires processing, and the edges (ij are used to prevent the starting of task j

unless task i has been completed. Two tasks can be executed in parallel if and only if every

predecessor of one task does not include the other task, and vice versa. The precedence rela-

tionship into a node is an 'and' type operator. Suppose {zl,z 2 , • ,z.) are the nodes having

edges into node 4 Then zo may start execution only after all of the z,, for i=1,2, • • • n, have

completed execution. Without loss of generality, we assume there is only one starting node and

one terminating node for each job. If there are several nodes with in-degrees of zero, we can

add a new node with in-degree zero and which points to each of these nodes. Similarly, for

* several nodes with out-degrees of zero, we can add a new node with out-degree zero and then

create new edges from all these nodes to this new node. The resulting directed acyclic graph is

called aprocess graph. Figure 3.1 gives an example of a process graph.

Two parameters characterizing a process graph are its length and width. The length in

a process graph, sometimes referred to as the total number of levels, is the number of tasks in

the longest path between the starting and terminating nodes. We place a node j at level i if

i= max [6] where 6. is the number of tasks in path u from the initial node to node j, and U is

the set of all paths from the initial node to node j. The width of a process graph is equal to

max [number of tasks in level I" In Figure 3.1, there are 5 levels and a width of 3.

.' Process graphs have a hierarchical structure so that each task in a process graph could,

by itself, represent another process graph. This property can be useful in describing an operat-

ing system or a computer program. In an operating system, the nodes in a process graph could

represent the jobs to be run. Within each job (or node), there is another structure of pre-

cedences which represents the execution order of the tasks. A similar situation exists in a pro-

gram environment. Subroutines can be represented by a node in the process graph, and within

each subroutine another process graph could exist with each node representing an executable

block of statements. This hierarchical structure provides a useful tool in studying the schedul-

ing problem at several different levels of complexity. When a more detailed schedule is required,
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10

b) (1,2), (1,3), (1,4), (2,S), (3,5), (4,6), (5,7).
(5,8), (8,8), (6,9), (7,10), (8, 10), (9, 10)

Figure 3.1 a) a process graph
b) a list representing the precedence relations (i.e., directed edges)
in a process graph i n a).
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each node of the process graph can be expanded into a finer process graph so that more detailed

tasks could be individually scheduled. The opposite is also true; we can schedule the nodes,

each of which represents a group of tasks in the original process graph.

Examples of process graphs representing some actual jobs include:

N x N matrix inversion

After the initialization task, we can concurrently calculate the determinant and the N,

cofactors. But each of the cofactors (say, th row and itS column) is, in turn, computed

from the (N-I)x(N-1) submatrix by eliminating the e'5 row and jP column of the origi-

nal matrix. Therefore, each task may expand into more subtasks. This recursion stops

when there is only a 2x2 matrix remaining in each of the subtasks. Figure 3.2 gives a

typical process graph for the matrix inversion problem.

2. Shell Sort

Shell Sort [KNUT731 sorts every hm number in order. It then sorts

h , Ae, ... and hAt numbers in order at each iteration, respectively. The numbers

hk At-,, • are integers with , > h,..; so, the number of parallel sorts depends on

how many numbers are to be sorted and the values of Ah i-i, 2, ..... Figure 3.3 shows

a typical process graph for the shell sort.

3. Quicksort

Quicksort IKNUT73J uses the first number (the key number) in the list to divide the list

into two parts. The left list contains all the numbers smaller than the key number; the

right list contains all the numbers greater than the key number. These two lists can

then be sorted independently by repeating the above procedure (i.e., use the first

number of each list as the key number and sort each list into two more lists). This sub.

division continues until there is only one or no task remaining in the subdivided list.

Hence, a typical process graph might look like Figure 3.4. Because this sorting pro-

cedure depends on the value of the first number in the list, however, some unusual pro-

cess graphs such as those in Figure 3.5 can result. -

In later chapters, we will consider two cases of process graphs. In one case, the struc-

ture of the process graph for each job is fixed and known in advance. In the second case, each

graph has a random structure; so, each job may have a different process graph.

24
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Figure 3.2 Matrix Inversion Process Graph
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Figure 3.3 Shell Sort Process Graph
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Figure 3.4 Quicksort Process Graph
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Figure 3.5 Unusual Quicksort Process Graph
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3.3 Taxonomy

We have divided the task assignment and scheduling problems into sixteen cases. The

parameters used for the classifications are:

1. Number of Jobs

We can have a fixed number of jobs, k, at the start (time t=O), or we can allow jobs to

arrive from a Poisson source with an average arrival rate of X jobs/sec.

2. Types of Process Graph

Each job in our problem can have an identical process graph, G, or each job can have a

random process graph, G'.

3. Processing Requirement of each Task

Each task may have either a constant or a random processing requirement. In the latter

case, the random task time for a fixed process graph can be sampled once at the begin-

ning and used by all jobs or can be sampled each time the task is being processed. If the

random sampling is done only once, it can be reduced to the constant processing

requirement case by transforming each task into a chain of tasks, the length of each

equal to the service time requirement and each task in the chain having one normalized

time unit of service demand.

4. Number of Processors

The number of processors is given by P. If there are enough processors so that each task

can be processed whenever needed, then P can be treated as infinite.

With the terms defined above, we can summarize-the sixteen cases with the taxonomy

tree in Figure 3.6.
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Figure 3.6 Taxonomy Tree
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At the first level, we distinguish whether there is a fixed number (k) of jobs at time t=O

or whether jobs keep on arriving (at rate of X) after time t=O. The second level deals with the

type of process graph for each job. All jobs have either the same process graph (G) or random

process graphs (G'). The next level separates jobs with constant task time (z) from jobs with

random task time (z) service demands. We also include a fourth level for any situation in

which the number of processors, P, is greater than the maximum number of concurrent tasks

that demand processors.

For all these cases we are interested in a parameter we call the concurrency measure, 01,

which is defined to be the average system time required using P processors ( S ( P )) divided by

the average system time required using one processor ( S I 1 )), that is

S(1)
1 .1 .

- measures just how much parallel processing is possible for a particular job, that is, - s the
1 '

"speed up" factor. Note further that --L is the efficiency of each processor. In our notation,

when P - oo, we really mean that we have a- large number of processors, say P', (i.e., max-

imum width of a process graph multiplied by the number of jobs) instead of an infinite number
1

of processors; thus, the efficiency P is not to be interpreted as zero for "P = oo" but rather

the efficiency is 1-

" oP

A large speedup may appears as a good architecture, but the efficiency of the processors

is also important. It is easy to get an efficiency of 1, but this system will be very slow. This

tradeoff is studied when we discuss the issue of power (in Section 5.5). Note also that the max-

imum speedup is

"0 S( sP) -"

Some of the other parameters not considered are

- task interruptibility (preemption)

- homogeneous versus heterogeneous processors

31

.......................................... !...



Preemption is not considered since the communication overhead required for each

- preemption may be too large in a distributed processing environment. For simplicity, we have

assumed homogeneous processors. If heterogeneous processors are used, all assignments must be

optimized so that the speed of the processors with respect to each job must be considered.

3.4 Notation

Following is a partial list of notations used throughout the rest of this dissertation.

Additional notation will be introduced as used.

k number of jobs present at the beginning (time 1=O)

x arrival rate of jobs from a Poisson source

G fixed process graph

G* random process graph

z constant processing time of a task

random processing requirement of a task

P number of processors in the system

r,L number of levels in a process graph

w width of a process graph

N total number of tasks in a process graph

S average system time required to complete a job

a concurrency measure
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3.5 Cases Studied

Many performance objectives are available:

- minimize the completion time of the slowest job;

- minimize the number of processors required;

- minimize the average system time;

- minimize the processor idling time or maximize the processor utilization.

These objectives can be used in combination or by themselves. In our work, we have

chosen to use the minimization of the average system time (referred to in some literature as the

flow time) as the performance objective.

Of the sixteen cases shown in Figure 3.6, eight of them have a limited number of pro-

cessors (P < oo). Therefore, these cases require scheduling of the tasks in each job. We defer

most of the scheduling problem to the references cited in Chapter 2 and concentrate on the

cases where we can assume that enough processors exist for all jobs and tasks that demand

them.

Two of the cases, k, G, z, P = co and X, G, z, P = co, are very simple to analyze. All

the parameters are deterministic; therefore, all the measures can be easily calculated. For both

systems, we find the average system time, S (in fact, a constant for all jobs), by multiplying the

number of levels, r, by the task processing time: S -r " z. Hence, a = --. For the arrival sys-
N

tem, by Little's Result ILITT611, the average number of jobs in the system is k ) S - X r z.

Since we have an M/D/o system, we also know the distribution of the number of jobs in the

system, Pk, to be

Pk== k e-s

In all cases in which it can be assumed that P - co and z is constant, the precedence

relationships given in G are of no consequence except to ascertain the number of levels. For the

constant service time cases, for every z units of service time, one level of the process graph will

be completed regardless of whether a node on the previous level has precedence over this node.

The assignment problem is also simplified by assigning all processors required to all tasks on the

same level of the process graph for z units of process time. Because we have enough processors

to keep any number of jobs active concurrently, the number of jobs is irrelevant. Any job,
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either k jobs at time t - 0 or those arriving from a Poisson source, will spent r z units of time

in the system before departing. Therefore, we need to study just one job in order to find all the

system parameters.

In Chapter 4 we study the cases i) k, G, z', P oo, ii) k , z, P < co, iii)

. k, G, z; P < oo and iv) X, G, z, P = oo. In Chapter 5 we concentrate on random process

graphs for cases i) k, G', z, P=oo, ii) k, G', z- P=oo, and iii) k, G, z, P<oo. In Chapter 6 we

study the communication overhead with the case k, G, x?, P<oo.

In the taxonomy tree of Figure 3.6, the section associated with a particular case is

shown on the bottom. The other cases are left for future research.
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CHAPTER 4
Fixed Process Graphs

4.1 Introduction

In this chapter, we explore cases where the process graph is aixed (i.e., given). The ser-

vice time for each task is random in Section 4.2, 4.3 and 4.4 while in Section 4.5 we assume it is

constant. The number of processors is assumed to be infinite; so the results obtained are

independent of the number of jobs. In Section 4.2.1 we first obtain the average system time for

the case of exponentially distributed service time for each task. The process graph is first con-
verted into a Markov chain; the equilibrium state probabilities of each state in the chain are

then obtained. From the average system time we find the concurrency measure for a specific

process graph. We use bounds on the average system time to get an approximation of the con-
currency measure in those cases where the exact ctincurrency measure becomes difficult. Section

4.2.2 describes how the bounds are obtained. In Section 4.3 we consider the arrivals of jobs to

the system instead of a aixed number of jobs. In Section 4.4 we consider a fii number of pro-
cessors, and using Stochastic Petri Net theory and the notion of power, we find the optimum
number of processors that should be assigned to each job. Section 4.6 deals with the assignment

of tasks to processors. We look at the ratio of the average system time when the best schedul-

ing algorithm is used versus that when the worst scheduling algorithm is used.

With either the exact concurrency measure or bounds on the concurrency measure, we

have characterized a process graph. The average execution time, the average width and the

speed-up that is possible for this process graph can all be derived from the concurrency measure.

4.2 Fixed Number of Jobs (k, G, sz, P w c)

4.2.1 The Exact Average System Time
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in order to find the average system time of a process graph, we must be able to compute

the average concurrency of the tasks. Towsley ITOWS78J introduced a model of parallel pro-

cessing for CPU and I/O overlapping. In this model, after a CPU task terminates (say task

CPU), it initiates another CPU task along with an I/0 task (i.e., CPU and 1/0) - see Figure

4.Ia.

CP.2 ,o

Figure.4.1a CPU and 1/0 Overlap

If we now represent this system behavior by a Markov state transition diagram (Figure 4.1b), a

job may be in any of four states:

1) CPU, the CPU is executing task CPU,.

2) CPU2  the CPU is executing task CPU alone.

3)1/0 the I/O task is executing.

4) CPUZ.IO the CPU is executing task CPU, in parallel with the execution of the 1/0

task.

The time spent in each state is selected from an exponential distribution with the mean service
-- i1 1 1 "

time for CPU,, CPU2, and I/O equal to -, -, and -i-, respectively.
v PAl 102 A
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Figure 4.1b Markovian State Transition Diagram

In this section, we use Towsley's approach in our concurrency problem by converting

process graphs into Markovian state transition diagrams. Two methods of obtaining the average

system time are then discussed.

4.2.1.1 Converting the Process Graph Into a Markovlan State Transition Diagram

A Markovian state transition diagram, M(G), is generated for process graph G where

each state in the Markov chain represents a specific set of tasks in G that can be executed in
parallel. Let C. represent a state in the Markov state transition diagram where a is the set of

" tasks that are executed concurrently. Also, let.II represent the number of tasks in the set a.

The chain starts with state C1 where f is the initial task in G'. For each state C, in the

chain, it will go to lal other states, each branch corresponding to the termination of one of the

tasks in a. The state C., at the end of one of these branches has the set of active tasks (a' },

where a' includes the tasks in a minus the completed task plus the activation of several other
tasks if any, due to the termination of this task. The exact algorithm is given in Algorithm
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CPM (i.e., Convert Process graph to Markov chain) in Figure 4.2, where the procedure for

obtaining the Markov Chain from a process graph is described. Figures 4.3a and 4.3b are exam-

pies of this algorithm.

zI

ALGORITHM CPM

1. For the initial task i, we create an initial state with one active task i.
Mark this state 'unlabeled.'

2. Select one of the unlabeled states C,,, and mark it 'labeled.'
Suppose there are z active tasks, 1 , , , in this state C,,.
For each 0', create a branch with the branch label of 0,;
this label corresponds to the termination of task 0,.
If we traverse back from state C, to the initial tasks,
the tasks on the branches of this path form the set of completed tasks.
By adding 40, to this set, we can check the process graph for new tasks, if any,
which become active; call this set 6,.
The branch with label 0, goes into state C., where

If C; does not exist, we create this state and mark it 'unlabeled.'

3. If any state is not marked 'labeled,' go to step 2.

4. Create a branch from the terminating state to the initial state;
stop.

Figure 4.2 Algorithm CPM

We find that there are as many levels in ,(G) as there are tasks in the process graph G. This

also equals the number of states visited in MG) before a job cycles back to the first state C/ in

the Markovian state transition diagram.
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Figure 4.3a Process Graph

4.2.1.2 The Average System Time

For a state C., the rate of leaving this state is u,+IUp2+ - -+ip1 01, where -is the mean

of the exponential service time of task ica. Therefore, the mean time spent in this state is

Let us now assume that ;s, - p for all tasks i. Therefore, the mean time a job stays in state C.
is
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Due to the memorylesa property of the exponential service time distribution, each task

in C, has the same mean service time regardless of whether a specific task had been processed in

another state C. Hence,

Prob ask i completes firt I i ] -:
'7a.

for all ita.

Starting from the initial state, there are many paths a job can traverse before reaching

the terminating state in a Markovian state transition diagram. Since we know the probability

of traversing each branch, the probability that a specific path has been taken can be calculated.

Suppose the path taken proceeds through the following states:

C C.. , Co,.

The probability of taking this path is fl1 -

Suppose there are r different paths from the initial state to the terminating state in the

Markov state transition diagram. If it takes an average of T, units of time to complete path i

with probability p, this path is chosen, then

s (P) ( T. A (4.1)

The total number of paths.from the initial state to the terminating state is enumerable.

By summing the product of the total average time spent in each state in a path and the proba-

bility of taking this path, we are then able to find the average system time 'of the process graph

represented by this Markovian transition state diagram.

Take the example shown in Figure 4.3b, the average time for path

CA. C,, CDC, CDa CDC; CDF, C, CG

including return to CA (i.e., a cycle) is

1 1111 1

and the probability of taking this path is Summing over the product of aver

age path time and the probability of taking this path over all possible paths, we obtain an aver-

age system time of 15.0556.
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From a simulation of this system, we obtain a value of - 5.09 for the average system

time, a result which is in very close agreement with the predicted value.

4 ,
From the above calculation, we see that the average system time is greater than -

which is the number of levels in the process graph (Figure 4.3a) multiplied by the average ser-

vice time of a task. The reason for this difference is that task G must wait for the completion

of its 3 predecessor tasks (tasks D, E, and F) before it may start. Thus the time to process

nodes D, E, and F in parallel (even assuming that they begin to be processed at the same point

in time) is greater than - since we must wiat for the slowest of the three to complete (and thisp
will exceed the average task time for each - see Equation 4.4 below). We are seeing the cost (in

increased system time) due to the dependencies among the paths from initial node to terminat-

ing node.

4.2.1.3 The Concurrency Measure

The concurrency measure can be calculated from the average system time as

Sm (P) .

S(i)

Substituting Equation (4.1) into the concurrency expression, we get,

'-: ~±Tip, •-

..VN

We can find or by another method. We have transformed the process graph into a Mar-

kov state transition diagram. If, in addition, we have a branch going from the terminating state

back up to the initial state,' Kei then have a discrete state continuous time ergodic Markov

chain. The equilibrium state probabilities can be solved by the balance equations, which equate

the rate into a state to the rate out of the same state. In addition, we need Ex, - I where r,

is the equilibrium probability at state i. Even though there might be a large number of states in

the Markov chain, due to the characteristics of process graphs, the balance equations will form a

lower triangular matrix, and it is easy to express all the state equilibrium probabilities in terms

of irl. Then, by using the'" jr. - 1 equation, we Bnd r, which, in turn, gives us all the equili-

brium state probabilities. Figure 4.4 gives an example of the balance equations in matrix form
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for the process graph given in Figure 4.3b, assuming ja, - p for all i.

A00000000000000 ir, 2 7r2
0 P 0 0 0 0 0 0 0 0 0 0 0 0 0  12 .3 1& 3
O~POOOOOOOOOOOOO 13 4 W

00#OOO0OOOOOOOO ir8  2 pire

OOOpOOOOOOOOOOO ar7  A =
00 0&000000 7rOO OO O 2 2p rg

OOOOAppOOOOOOOOO X10 A II

OOOOOOpOOOOOOO 7ri 1 2 Ar1

00000000 1 ' 7OlsO A1 rs

Figure 4.4 Balance Equation

Let us denote the matrix multiplication in Figure 4.4 by

Anl- Br(

A is a K - 1 X K - 1 square matrix (where K is the number of states), n is a column vector of
7r,'s (i - 1, 2, ,K- 1), B is acrow vector of the rate out of states 2, 3, ,K- 1. and
IY is a column vector of xr, 's (i - 2, 3, . ,K). A 'Is' in the VEA row and jh column in matrix
A represents an edge with a label pu from state j into state (i + 1) in Figure 4.3b. Therefore the
matrix product of the j48 row of A by n results in the rate going into the state (i + 1). The jh

entry in B represents the number of edges leaving state (0 + 1) multiplied by I&. Thus, multiply-
in ih th entry in B by the so entry in f' results in the rate out of state(i+1.Hne

A H - B H' equates the rate in and rate out of state ,, for 2 < i < 16. For example, the 618

row of A n contains pu xs + ;&'w,&which is the rate into state 7, and the.8' 8 row of B H' contains
3 ps X7 which is the rate out of state 7.

Once we have found the x,, we can proceed as follows to obtain the concurrency incas-
u re.

4S
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N I
*-• S(P) -

.~SM) N

where 0k is the number of active tasks in state k and Eeori is the average number of tasks

being executed over the entire execution period. Hence,

1k-: (4.2)

This is the main result of this section.

From renewal theory, we also know that S (P) is the mean recurrence time. Thus,

S (P) I where ir, is the equilibrium probability of either the initial or the terminating

state. Hence,

1

tN N

A simple example is given next. Figure 4.5 is a process graph with its Markov chain
shown in Figure 4.6. The set of balance equations are

o--

-x 2jsir2

PW2 PX P4

"-I2""'•

The solution is

2
= - -

7
and
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Figure 4.5 Process Graph

1

Hence,

8

7
or a

There are two paths from state 1 to state 5, each with equal probability of being

chosen. The average path time for both paths is [i+1~+1+] 1.. Hence,

7 1
SIP) 2 7

$1) 4 1 8

which agrees with the or calculated above.
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4.2.2 Bounds on the Average System Time (k, G, z*, P = oc)

In Section 4.2.1, we found the exact concurrency measure (Equation 4.2) for a fixed pro-

cess graph with random task times. Although the algorithm used in obtaining o is not difficult

to carry out, it is cumbersome to either calculate S (P) by going through all the paths in the

Markovian state transition diagram or to solve for the equilibrium state probabilities from a set

of balance equations derived from the Markov chain. If the exact concurrency measure is not

required, we may use upper and lower bounds as substitute measurements for the concurrency;

they are usually much more easily obtained than the exact solution.

In order to find an upper bound, we "synchronize" the execution at each level by forcing

all the tasks in the next level to wait for the slowest task in the current level to complete before

they all start executing. We call the time between the synchronization of two neighboring levels

the "forced synchronization time" (FST). If we sum up the FST at each level of a process

graph, an upper bound for S (P) is obtained. For a lower bound, we just find the average time

required to execute the tasks in the longest path from the initial node to the terminating node.

Since this is the minimum time required for any job with this process graph, we have a lower

bound. In the following sections, we describe the exact procedures for finding these bounds.

4.2.2.1 Blocking Time of Predecessor Tasks

In this section, we find the average time contributed by the "blocking nodes." Blocking

nodes of a specific node i in the process graph are the nodes that have precedence relationships

*-. into node i. Since a task cannot start execution until all of its predecessors have been com-

pleted, we would like to find the average time required for the completion of all its predecessors

in the previous level (assuming they all started at the same time).

Each node, i, in G has several precedences entering it and several precedences exiting it.

During the processing of a task, out-degrees do not influence the completion time of this task,

but in-degrees do. Suppose there are n precedences entering this node; the task can't start exe-

cution until all n tasks are done. In other words, assuming that all these a tasks are begun at

the same time, the effective execution time of these n tasks with respect to node i is equivalent

to the max(t1, 2, ., where t, j-1,2, n . • n is the random service time of task " We find

the probability distribution function of this max as follows:

SF'(t) = Prob 1completion time of n taeks < t]
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*=Prob [PI :5 11*Prob 1125 .. tI *Prob P, 5 11

where 11t) is the probability distribution function for the service time of one task. The equality

*is due to the independence of service times of the tasks. From probability theory, we derive the

expected time for finishing n tasks from

£E completion time of n tasks

CO

=f0  1-F1)i dl (4.3)

Since Ft)' :5 Fjt), E (completion time of n tasksj E [completion time of one task]. If the ser-
vice time is exponentially distributed with an average service time of 1/,u, then Equation (4.3)
becomes

rcompletion time of n task, with 1
ELexponentially distributed service lime.

(4.4)

In n+
Note that for vi 1, Equation (4.4) is approximately (where *is Euler's constant

-. 57721... )Equation (4.4) can also be obtained from the following equivalent queueing system:

A service center with ni servers, each server having an exponential service time distribu-
tion with mean of 1/0-,

No waiting room allowed in the system and servers starting execution when there are ni

48



customers in the system;

Once the servers start execution, no new arrivals allowed to replace the departed custo-

mers.

The time, S, to complete all n customers measured from the start of execution is

S: + I + ,,+ I-

*-nit (n-I)p /A

1 '1°

The equivalence can be shown as follows:

The n customers in the queueing system are equivalent to the n blocking nodes;

One server becomes inactive after each customer departs from the queueing system and

this is the same as the completion of one blocking task;

The service time of each customer is exponentially distributed with a mean service time

of 1, and the time required to complete a blocking task is also exponentially distri-

buted with the same mean service time of

Hence, the average time required to empty this n-server queueing system is the same as the

average time needed to complete the n blocking tasks if all of them start execution at the same
. "- time.

" From equation (4.4), we note that without the blocking effect, each task of a process

graph requires an average service time of .. However, with the blocking effect, the average

In it
time to complete a task becomes approximately n where n is the number of tasks blocking

this task. Thus a n ) - giving a speedup of - .n; this falls short of the maximum

I n In n
possible speedup which is equal to n. The reason for this poor speedup is clearly the blocking

effect.

" -Since we know the in-degrees of each node in the process graph, the average time

required to wait for the completion of all the precedence tasks for a specific task, i, can be cal-

culated from Equation (4.4).
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4.2.2.2 Bounds for Structured Process Graphs

We will first study "structured process graphs," which are defined as having the follow-

ing properties:

1. All sons of a node, i, must merge back into one single node, j, before reaching the ter-

minating node, and

2. only node i can have a direct precedence relationship into each son of node f; no other

nodes may have direct precedence relationships into sons of node i.

With the above properties, each son may be replaced with a set of tasks with the same proper.

ties. A structured program is a good analogy of this process graph. In a program, which must

be entered at one specific point and exited at another, several parallel blocks of code may be

executed simultaneously, but each block must be entered and exited from the specific points.

Property 2 above states that no 'GOTO' statements may direct the execution out of or into a

block of code. Figure 4.7a) shows a structured process graph, while the edge e in Figure 4.7b)

violates the property of a structured process graph.

Within each structured process graph, we can divide the tasks (other than the starting

and terminating nodes) into several mutually exclusive sets, where each set of nodes, together

with the starting and terminating nodes, forms a structured sub-process graph. Property 2

prevents the precedences from a node in one set of tasks leading into a node in another set. We

call each set of the tasks a 'group-path,' and we let m denote the number of group-paths in a

structured process graph. Algorithm GP below describes a method for finding all group-paths

for a given structured process graph.

This algorithm begins at the starting node of G and, by keeping track of the nodes

diverging out of each task, looks for nodes that are in a single group-path. If tasks eventually

merge back after diverging out of a single node, they are considered as one group-path. If tasks

do not merge back before the terminating node, they will be considered as separate group-paths.

By substituting other tasks for the starting and terminating nodes in Algorithm GP, we

can find the sub-group-paths within the process graph.

Nodes within the same group-path have the same PATHNUMBER in the algorithm

below:

Algorithm GP:
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Le

a) b)

Figure 4.7 a) A structured process graph b) A non-structured process graph

STEPO Mark all nodes 'NEW.'

PATHNIJMBER - 1

PATI4(v) - 0 for all nodes v

- .STACK -'empty'

STORAGE .- 'empty'



v the starting node of G.

STEPI Mark u 'OLD.'

Store the sons of v on the STACK.

STEP2 Select a task from the top of STACK.

Call this task v.

If STACK is empty, STOP.

STEP3 If v is 'NEW'.

Put v in STORAGE.

Mark it 'OLD.'

Put all sons of v on STACK.

GO TO STEPS.

STEP4 If v is 'OLD.'

PATH(w) PATH(v) for all nodes wo in STORAGE

STORAGE - 'empty'

GO TO STEP2.

STEPS If v is the terminating node,

mark it 'NEW' again (since the terminating node

is not considered to be in any one
particular group-path)

PATH(w) PATHNUMBER for all nodes wo in STORAGE

STORAGE4- 'empty'

PATHNUMBER .- PATHNUMBER+ 1.

STEPO GO TO STEP 2.
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For rn-1, we know that there does not exist any individual path that is not coupled

with some other part of the G. Instead, many precedence relationships exist between two neigh-

boring levels. Because of this, the line of active tasks in G is roughly the same as the levels of

G since blocking prevents any tasks from becoming active if they are several levels ahead of the

active tasks.

From this analysis, we can immediately find an upper bound to the average system time

of G. If we force the execution to complete one level of G at a time, no tasks in the following

level are allowed to start, even if there are no tasks on the current level to block this task. The

average service time for each level is the average time required to process the slowest task, i.e.,

the task with the largest number of blocking nodes from the previous level. We introduce a new

parameter d,.,,,, which gives the largest in-degree per task for all tasks on level i of G. From

our definition of the process graph, we have 4 1jx-0 and dh.-1 for all G.

Theorem 4.1
Given a process graph, G, which has one group path (rn-1), r levels and

(du~ I i-1,2,3 ... r), Sup, an upper bound for the average system time -of G, is equal to the

sum of the average times required to process the node with the largest in-degree at each level.

[overage time required to process1
-VD a node with in-degree of d...

If d,. -0, the average processing time is defined to be the average service time of one task.

(The sum on jcan be approximated by In d, when d, > 1)

Proof:
d. is the largest in-degree for level i of G. If we sum the average times required to process
tasks t, for i-1,2, -. -,-r and the in-degree of t, is d,.,, the resulting average time equals that

of a process graph with a path, p, from the starting to the terminating nodes, where each node

on this path at i'h level has an in-degree equal to d... If any one of the (d.. is not on the

same path, we must show that the resulting average system time is no greater than SUIB

Suppose the maximum in-degree node on level j of G is on path P' rather than path p
(see Figure 4.8). Let i1 denote the node in the j4 level for path p, the node in the j+0~ level

for path p and is the node in the fh level for path p'.Since the number of blocking nodes for

node i1 (that is dl), is less than or equal to the number of blocking nodes for node is (that is d)

the average time required to complete node il is smaller than or equal to the average time

53



PATH P P#

jLEVEL i,-

(J~)V LEVEL 12

Figure 4.8 Maximum In-degree Nodes

required to complete node 4:

-~ -<x ford,<:d -d.M

Therefore, the average time to complete path p with node il in the jklevel instead of node is is

smaller than or equal to SU Similarly, if the nodes ill, i12, - ,and il. on levels

il, j2, and j. of path p are not the maximum in-degree nodes, then

becaused, )I d,,. for11,2,

lHence, SU is in upper bound for the average system time of G.

A simple lower bound on the average system time is just the average time required by a
task multiplied by the number of levels.

Theorem 4.2

A lower bound of the average system time of a process graph , given r levels, is the average
service time of one task multiplied by r.
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. ~L a= r -- .-

Proof:
Since each level is defined as having at least one task in it, the minimum time required to pro-

cess one level is the service time of one task. For r levels, the minimum average system time

cannot be lower than the average service time of one task multiplied by r.

The upper and lower bounds obtained in the above two theorems are for different pro-

cess graphs with specific sets of {d,,mxiVi); however, each set of {d, .,JVi) can represent a

number of different process graphs. Indeed, if we do not limit the number of tasks per process

graph, there could be an infinite number of process graphs generated from each (ditki}. In

the proofs of both theorems, the number of tasks and the structure of the task graphs were not

used. In other words, provided the same sets of (djVi) in both theorems, we have a class of

process graphs with the same upper and lower bounds.

For a structured process graph with m-1 group-path, the actual progress of active

tasks sometimes closely follows the physical levels of the process graph. This is caused by the

precedence relationships between adjacent levels (which forced the synchronization at each

-- level). Hence, the average system time is often close to the upper bound. This fact has also

been verified by simulation. For m>1 group-paths, since there are no precedence relationships

between the group-paths, the fine of active tasks progresses at a different rate for each group-

path, depending on the random service time requirement of each task.

If a process graph has more than one group-path, the method described above for
obtaining bounds for m-1 must be improved to show the influence of the number of group-

paths. To classify a general structured process graph, we require the maximum in-degrees for

each level of all group-paths: ( (d.1 AVi), {dJVi}, ... , {d,,.jIi) ). The order of maximum in-

degrees per level in (d..lIVi) for m-i does not influence the bounds since any permutation will

produce a process graph with a similar bound. By the same argument, the order of the sets of

, . the maximum in-degrees for each group-path does not influence the bounds.

- . As has been discussed in the case of m - 1, the average system time is usually close to
the upper bound; therefore, we will use the forced synchronization per level to approximate the

average process time required for each group.path. For a group-path j and level i with max-

imum in-degree node having a value of d,,, the probability distribution function for the service

time of this level is IF(1, and the probability density function is
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7o.7

- d,, [FIt)l -  t (.)dt-

To obtain the approximate average system time for the multi-path process graph, we can reduce

each group-path into one 'super-node.' The probability density and probability distribution

functions of the service time for each of the super-nodes j are

f,() =- fl,() 0 fAY) 0 (' ~~bt 4.6) -q

where 0 represents the convolution operator, and
t

FAt) f0of,1) dr (4.7)

respectively, where each fAt) is a probability density function represented by Equation -4.6).

Looking at the terminating node, it has m 'super-nodes' "blocking" it. This is the exact

analogy of Equation (4.3) with Mt) replaced by the Ft) of Equation (4.7):

[the average time required to proceso
node ith in-degree. of m group-pathej

f, 1 - ( .t (4.8)

The convolution in Equation (4.4) is a tedious task. However, according to the central

limit theorem (PAPO651, as we add up a large number of independent random variables, the

probability density function of the resulting sum i close to a normal density function, with the

average of the sum equal to the sum of each level's mean process time and the variance of the

sum equal to the sum of the variances of each level. We assume that the service time of the

tasks between the levels are independent of each other. For each group path, , we approximate -

the probability density function of its processing time by the normal density function with mean

a, and variance b,, where a, is the sum of the average times needed if the forced synchronization

at each level in the group path is used and b, is the sum of the corresponding variances of the

average processing times at each level.

.. .. . .. . .. . .. . .. . .. . .. . .
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Using this approximation, Equations (4.6) and (4.7) become

1.,(t 2- b e. /2 (4.9)

and

t _ /2
V b( dz (4.10)

respectively. Substituting F,(t) into Equation (4.8), we may then calculate the upper bound,

SV, of the average system time (Equation (4.8)) required to complete a process graph with m

group-paths as

11
1 -

f b, C

0~J d]

4.2.2.3 Bounds for Non-structured Process Graphs

For a non-structured process graph, it is harder to obtain an improved expression for

the average system time. Although the lower bound expression on the average system time is

still the same as that of the structured process graph, we have been unable to fnd an upper

bound; this is due to the complicated coupling of the tasks, which makes it almost impossible to

find group paths.

4.2.2.4 TIghtness of the Bounds (m - 1)

The upper bound is obtained by summing the FST at each level in the process graph.

For a given number of tasks, N, and number of levels, r, we know the lower bound to be - r.
.A

By obtaining the upper bound on the worst arr angement with N and r, we know approximately

how tight the bounds are. Since we distribute one node each for the initial and terminating
tasks and N - 2 nodes among the remaining r - 2 levels and assume that precedence relation-

. ships exist between all nodes of the adjacent levels (this being a process graph with any two
- adjacent levels forming a complete bipartite graph), we are looking for:
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~A
SMuB - max $

-max- 2+

subject to n = N-2.I-'

N-2 -2

This maximum occurs when - - f allj-2,3,4, r2 I _ is not an
r-2 r-2

integer, then n s  for j-2,3, -- ,z where z= remainder of -2 andN-2-2

n= for j = z+, z+2, , -2. The ratio of the maximum upper bound SUMw to

the lower bound gives us a measure of the tightness of the bounds.

For example, for N - 6, r - 4,

SMUB. 42 + (r-2)E

SLIL

.-- 4

. . ~Thus, -g 1.25, which indicates that the upper and lower bounds are very close to each -

other, but for a larger process graph such as N - 102, r - 22,

SMJB Not____ 2.7
-217

.22-

the bounds are further apart.

Of course, we are comparing the maximum upper bound possible, but as N becomes

large, the ratio of the upper to lower bounds also gets larger. The exact upper bound depends ..

on the number of levels and the number of precedence relationships in a given process graph.
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Where, between the two bounds, does the exact average system time lie? This depends

on how tightly the tasks are coupled to each other in the process graph. The more tightly they

are coupled, the closer the average system time is to the upper bound, and vice versa. Figure

4.9 shows a process graph with average system time close to the upper bound.

4.3 Arrivals of Jobs (X, G, z', P - oo)

In the previous section (Sections 4.2), we obtained the average system time and bounds

on the average system time of a job. Since we have assumed that there is an infinite number of

processors, all jobs start execution at time zero. In this section, we assume that the jobs arrive

from a Poisson source. As soon as a job arrives at the system, it starts execution (again this is

due to P = oo). Thus, the results obtained in Section 4.2 can also be applied to this case. In

addition, from Little's result, we have, on the average, k = X S (P) jobs in the system, where

S(P) is the average system time obtained in Section 4.2.1.2, and we have the bounds on the

average system time as

kVu== X SUB

and

kLB = X SLB

• where SuB and SLB are the bounds obtained in Section 4.2.2.

4.4 Stochastic Petri Nets (k, G, z*, P < oo)

In this section, we limit the number of processors to P < oo, and the Stochastic Petri

Net (SPN) IMOLLSI1 model is used to find the average utilization of these P processors given k

jobs, a fixed process graph and task service times which are exponentially distributed. A process

graph can easily be transformed into a Petri Net, as was shown in Section 2.3.1. To the result-

ing Petri Net we add a 'place" called "Processor Available," with P tokens in it, and another

'place" called "Unexecuted Jobs," with k tokens in it. Initially, all other places have no tokens

in them. We add an edge from the "Processor Available" place to each transition requiring a

processor and another edge from each transition finished using the processor to the 'Processor

Available' place. Figure 4.10 gives an example of how we transform a process graph into such a

Petri Net.

.- o
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SLB - 300

SuB - 494.95

S- 472.9

Figure 4.9

Process Graph with Average System Time Close to the Upper Bound
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7. 7

Figure 4.10a Process Graph
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COMPLETION COMPLETION
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When all tokens in the "Unexecuted Jobs" place have been used up, and no other

tokens remain in any place except the 'Processor Available' place, the Petri Net said to have

reached the recurrent state. From the analysis provided by the Stochastic Petri Net, we can

find the average number of tokens, , in the "Processor Available" place, which also indicates

the average number of idling processors. Hence, the average utilization of the P processors is

I".- 0 - 1- -

Since P is limited, we do have a scheduling problem; however, a SPN does not allow the

assignment of a specific task to a processor. The assignment depends on which transition requir-

ing a processor fires next. Thus, the performance obtained with a SPN analysis lies between the

best and worst assignment results.

If, instead the value of P is the design parameter, we may use the definition of power

IKLE1791 to find the optimal number of processors for a specific process graph and number of

jobs. Power is defined to be the utilization of the processors divided by the normalized average

system time. A SPN provides the values of both of these variables for a specific value of P. We

can therefore plot power versus the number of processors to find that number P at which the

power will be maximized.

4.5 Task Assignment (k, G, z, P<oo)

In this section, we find bounds on the average system time by developing algorithms

that will give the best and worst scheduling in terms of the average system time.

If the ratio of these two bounds is not large, perhaps random scheduling of the tasks to

the processors could then be allowed. Random assignment has the advantage of no overhead

being needed to schedule tasks. Whenever a *processor is available, it will just grab any task

that is ready to be executed. We know the performance of the system must fall between the

two bounds.
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First, we assume the shape of the process graph to be bounded by a diamond as in Fig-

ure 4.11.

LM

Figure 4.11 Diamond-shaped Process Graph

This type of process graph can be characterized by two parameters: L and Mn where L is the

* number of levels in the process graph and m is the slope of the diamond enveloping the boon-

dary tasks. We assume a continuum of tasks within the diamond.

Since the service time of tasks are constant, we normalize the service time of each task
to one unit of time.

From [COFF781, we know that the assignment which minimizes the average system
time is the shortest expected remaining processing time first assignment. This is the Depth-fiut
Assignment Algorithm, where all available processors will be assigned to the tasks in a job that
is closest to being completed. In other words, we are trying to complete jobs as fast as possible.
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On the other hand, if we want to maximize the utilization of the processors, then the

longest expected remaining time first assignment is used. This is the Breadth-first Assignment

Algorithm, where all available processors are assigned to the jobs that have the least amount of

processing to be done. In this assignment, we are trying to process all jobs at the same time, so

that all the jobs complete at times very close to each other. We are interested in finding the

ratio of the average system time obtained from these two assignments,

Sb

Si

where $b is the average system time using Breadth-first Assignment and Sj is the average system

time using Depth-first Assignment.

If we assume all jobs depart at the same instant as the last job when calculating S,.

then

P 2 L
Sb- 2r, + 2

where T1 - 2k and P<-k. Simplifying the above expression, we get

2ki 2kS.PM+ kL,=

"- s,- 2k 2Pm

If we provide a maximum number of processors, P -L k, then
m

2k 2
"Sb -- + h'

"-'.~~ k .

L+LL

22

that is, it takes L units of service time to complete all k jobs. This is what we expect, since

each job has -;W processors, which is equivalent to P- oo. Thus, each job takes L units ofmI

time to complete and all k jobs run in parallel.
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It we let P- i, then

S- M k 2

Since there are tasks in each job, it takes k [ - + i units of time tocomplete the i.

job. Thus, the average system time for these k jobs is

k

k+ L2~i

k

~kL kk , L2"
-- ~ m 2 i .

The difference between S and $, is due to the assumption in calculating Sb that all jobs depart
at the same instant as the last job; this assumption is pessimistic, as we see, and so it may be
made in obtaining our bound. Thus, for k > 2, Sb > S.

For example, if we let P - 1, m - 1, k - 10, and L = 5, then

. 2 L+125 125

and

S- k - + 1 -121

As predicted, S < S,. By changing the value of P to 50 while keeping all other parameters in
the above example the same, we get

50 (10)(25)
sb (2)1) + (2150.

which is exactly the average system time, S, using the Breadth-first Assignment.

As for Sd, the least average system time can be obtained by considering the process
graph as a rectangular shape since, for this shape of process graph, the utilization of the proces-

sors is at the maximum. The total number of tasks in a process graphis L; so, the width
L2

(average number of tasks per level) of the rectangular process graph is -. Thus, the largest

.
.

.2.
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number of jobs that can be processed at the same time by P processors is

P ..
L L <k

2m 2m
k*"- --k > k

2m

Thus,

~~ik'L + "-L jl )k* (L jJ +s)l, :

jk

where j - k k In the numerator, the summation term represents that
° kp

LL/2 mJ
every L units of time, k' jobs are completed; the second term in the numerator represents the

time required, (LjJ + 1) L, by the last Uj- L j ) k'jobs. Hence,

;YJ(tiJ + 1)+
2

P k kL
If we assume < k, then i-- n- . Ifj is an integer, then

L/2m P 2Pm
L/2m

%.1

: Sd -- L, and
2'

= ." " kL' Pm"

I. Pm

2Pm 2kL
k+L
4P2

IP ' Otherwise,.'
. m.2
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kI,' Pm

V J~i~i±~±+ (i -Li)(Lij+1)L

If ~ /2 weasm k then j1, and Sdi L, or

+L Pmn
*2Pm 2k

L

kL PM
2Pm +2kL

For example. Figure 4.12 shows -0 versus P for L -10, k 5 and'm -1, and Figure
4.13 shows 0 versus P for L - 10, k - 5 and m - 2. We observed, in both Figures 4.12 and
4.13, that the value of V', after falling initially, will rise slightly before monotonically decreasing

again. The cause of this rise is from the assumption of a rectangular process graph in calculat-
ing Sj. Since the rectangular process graphs have a constant width of L/2m, when the value of

P reaches a multiple of L/2m, an additional job can depart at every L time step. This fact
__ decreases the value of Sd faster than the value of Si is decreasing whenever the value of P is

kclose to a multiple of L/2m. After P > =/-n S L, then this elfect disappears.

The next theorem gives the asymptotic behavior of V'as P and k become large.

Theorem 4.S
As k and P become large, V' < 2.

Proof.

Case I /2m

S6
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7T -

Figure 4.12 0 versus P for L -10, k 5 and m-1
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LkL2 Pm+
• - kL+2Pm ""k

~L-
2

k kL
whereij----- or" P 2Pmo"'

L/2 m

kL2  Pm

kL2  L

4Pm 2

PML
-' 2k

-2+ kL L

4Pm 2

P Pm L Pm
Since we have the assumption of - < k or - < - < L; therefore, -- L < 0.

L/M 2 2k
Thus, V < 2.

Case I1 > k
L/2m -

Pm kL 2Pm
For this case, we know 5 - L. Therefore, _ - -- + If we let z - -- then;..-'2kL 2Pm Lk'

: +1 (4.11)"

4

Plotting V versus , we obtain Figure 4.14.

If we take the derivative of V, with respect to s (approximating x by a continuous variable) and

set the result to zero, we can And the s at which V is at the minimum:

illdO _ 1 1 .
*- - dx 4 g2 .

The minimum occurs at z - 2. Thus, since z- 2 is an integer, we have also found the
2pm 4Lk L

minimum of 0 as the integer. As long as:- - <8, then # <2, or P< L - 4k-.
Lk in m

In other words, as long as the number of processors is fewer than four times the number of jobs

*"1 multiplied by the widest part of the process graph (-), then 0 < 2. Usually, we use only, at

k 2P 2m
MOstL, k(A-processors. So, if we let P:5 kA, then x -- - 2. Also, since

Mm Lk- Lk
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1 . _ J _ 3 . .J .. _ I , n , ..

1 2 3 4 5 6 7 8 -

X

Figure 4.14 V versus z

kL Lm
ee = - P > 2m > 1. Again, we see from Figure 4.14 thatwe have assumed P > m Lk L ga

between z I and : 2, < 1
-4

P
From Case 11 of the proof in Theorem 4.3, we know that, for - > k,

1/2m-
Pm kL kL

V 1 -+---- I. Therefore, in Figures 4.12 and 4.13, the values of 0i for P 2t-.- are defined
32kL 2 Pm - m

by the same expression as Equation 4.11. If we extend this curve backward for smaller values of

P until V - 2, we obtain an easier bound on V. This is shown in Figure 4.15. The values of
P' at which V 1 2 intercept this curve can be calculated from the following expression:

Pm kL

2 -k-L+ -ipr-

or

P' 'm LP 9 P' + .- --0
2kL 2m
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Figure 4.15 0 versus P
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Solving for P' we get

f"L

P' -0.268-
m

_ kLTherefore, for 1 < P < 0.268-, the upper bound on 0 is 2, and for
kL'-" Pm .kL "

0.268 k- < P < kL,, the upper bound on 0 is the polynomial - + - This fact is givenK m m kL 2Pm
in the next Corollary.

Corollary 4.4 The upper bound of the ratio 0 is
kL

L 0 .< P k L < P2 k L

+ -±L- 0.268 < P <-k
-kL 2Pm m m

Figure 4.16 shows a plot of € versus P.

Thus, we see that the ratio of the average system time for the worst assignment to the
best assignment is given by Corollary 4.4. This ratio is quite small. Hence, if we do allow ran-

dom scheduling of the tasks to the processors, the resulting average system time will be bounded

relatively tightly by Sd and S&.

4.5 Discussion

In this chapter, we discussed two methods for obtaining the average system time and

the concurrency measure of a fixed process graph with randomly distributed service time of
tasks. These results apply to both a fixed number of jobs at time zero and an arrival of jobs

from a random source because the number of processors is assumed to be infinite. In the process

of finding the average system time, however, either an enumeration algorithm must be used or a

system of a large number of equations must be solved. Both methods are time consuming when

the number of tasks in the process graph becomes large.

We can, however, use the upper and lower bounds on tae average system time as a rule

of thumb in approximating the concurrency measure. A relatively easy way to calculate both

bounds has been presented.
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2.0

1.0

Figure 4.16 The Upper Bound for the Ratio, 0
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7-7 w: -

A Stochastic Petri Net model was used to Aind the average utilization of processors for

the case of a fixed number of jobs, fixed process graph, random task service time and limited

number of processors.

Two scheduling algorithms were analyzed to find the ratio of the wont algorithm to the -

best algorithm in terms of the average system time. We found this ratio to be less than two for

diamond-shaped process graphs.
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CHAPTER 5
Random Process Graphs

5.1 Introduction

In Chapter 4 we studied cases where the process graph was considered to be fixed.

Therefore, the analysis and the system parameters obtained are good for only one particular

process graph. When we change to a different process graph or try to predict the general system

behavior of the other process graphs, the results from a single process graph are often not very

helpful.

In Sections 5.3 and 5.4, we obtain bounds on the average system time of a random pro-

cess graph, with N tasks and enough processors so that a processor will always be available any

time a task demands it. With these bounds on the average system time, we can find the bounds

on the speedup achievable when we use multiprocessors to process a fixed number of jobs. The

speedup is defined as the inverse of the concurrency measure and the concurrency measure is

still defined as the average system time using P processors divided by the average system time

using only one processor. In Sections 5.5 and 5.6 we will assume that the number of processors

is limited.

In our first model in Section 6.4, we will assume that the number of precedences is arbi-

trary; in our second model, this parameter is fixed to a constant. In the former case, only the

arrangement of the tasks in the process graph is studied.

In this chapter (except in Section 5.4.2), we assume that the N tasks do not include the

initial and the terminating tasks, and the number of precedence relationships, M, (if given) does

not include the precedence relationships between the initial task to the next level tasks and from

any task into the terminating task. The resulting upper and lower bounds are known to be two

average task service times smaller than the actual bounds. This change, while not affecting any

of the results, does allow a clearer explanation without worrying about the two additional tasks

at the boundary.
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In Section 5.2.1 we show that the number of arrangements of the tasks for a process

graph with a fixed number of tasks, N, is 2( 'i) and that the number of arrangements for a par-

ticular level, r, is [I" From the construction algorithm described in Section 5.2.2, we show

that the number of arrangements for an N-task, r-level process graph forms a Pascal tree. Since

the number of arrangements is Gaussian distributed with respect to the number of levels in a

process graph as N becomes large (this is proved in Section 5.2.3), most of the arrangements

will have a number of levels which (percentage-wise) is close to the average level, namely

'J .The Chernol bound, introduced in Section 5.2.4, will be used for the probabilistic

argument in Sections 5.3 and 5.4.1, in which we obtain upper and lower bounds on the average

system time for a randomly selected process graph.

With the number of precedence relationships (edges) and the number of levels added as

additional parameters, we find tighter bounds in Section 5.4.2. The two ipper bounds obtained

are compared in the Section 5.4.3.

In Section 5.5, the issue of trading off between the utilization of processors and the aver-

age system time is discussed. Finally, in Section 5.6, we briefly look at the bounds when the

number of the processors is limited to a finite number.

5.2 Some Properties of Random Process Graphs

5.2.1 Total Number of Arrangements with N Tasks

Process graphs with N tasks can have r-1,2,3, • • ,N levels. The only constraint on

the arrangement of the tasks is that each of the r levels must contain at least one task. There-

fore, we can replace the question, 'How many ways can we distribute N tasks in r levels with

each of the level containing at least one task' by the following simpler question, 'How many

ways can we distribute (N-r) tasks in r levels.'

This is a combinatorics problem. We know that the number of combinations of z dis-

tinct objects taken M at a time with repetition allowed is

24-

In terms of the number of tasks and levels, we wish to find the number of combinations of r lev-

els taken (N-r) at a time. An intuitive way of looking at this is to observe that we are selecting
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a particular level for each of the (N-r) tasks. Therefore, letting z - r and V - N-r, we have

JV- r-I r-I)

as the number of arrangements.

When summing the number of arrangements over all levels, we get the total number of

arrangements for the ALtask process graphs:

A-I N 2(N-7

w~ 20Vk
-2 -

5.2.2 A Method of Constructing All Arrangements of Process Graphs with N Tasks

After we present a method that constructs the arrangements of process graphs by using

a recursive algorithm, we then prove that this algorithm generates all arrangements for the pro-

cess graphs of N tasks. From this construction method, we will see that the number of arrange-

. ments for an N-task and r-level process graph forms a Pascal tree (from which we can also

- -obtain the number of arrangements for a process graph with N tasks).

The construction method is shown in Algorithm C:

Algorithm C

1. For N-1, there is just one arrangement

2. For N >2 tasks and r levels, we add to all the arrangements (possibly none) with (N-1)

tasks and (r-1) levels, one task at a new level, the rh level; we also add one task to the
rtA level of all the arrangements (possibly none) with (N-I) tasks and r levels.

3. Repeat Step 2 for each level r - 2,3, • • ,N to obtain all the arrangements for the N-

.-. task process graph.

Note that, in order to construct the arrangements for the N-task process graphs, we must also

construct all the i-task process graphs where i< N.
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Figure 5.1 shows examples of constructing

a. all 2 arrangements of the 2-task process graphs from the one 1-task process graph, and

b. all 10 arrangements of the 6-task, 3-level process graphs from the 4 arrangements of 6-
task, 2-level process graphs and 6 arrangements of the 5-task, 3-level process graphs.

From Figure 5.1, we observe an interesting property of the arrangements for process graphs.
That it, for any arrangement R, there exists another arrangement R which is symmetric to R
such that if in arrangement R, we let n, representing the number of tasks in level i, then in
arrangement R the number or taski in i0 level, n, , is

n, =-nL-,+, fori=l, 2, . L

where L is the total number of levels in R and R'

0 0

Figure 5.1a Arrangements of Process Graphs with 2 Tasks

From Section 5.2.1 above, we know that, with N tasks there are arrangements

with r levels. The above algorithm constructs

79.o.. . . . . . ..
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. F.,

1-T 0000 000 00 0
r- 2 0 00 000 0000

000 00 00 0 0 0
--5 0 00 0 00 0 000

% 00 0 00 00 000 0

0000 000 00 0
N 0 00 000 0000

0 0 0 0

000 00 00 0 0 0

0 00 0 00 0 000

00 00 000 000 0000 00
Figure S.b Arrangements of Process Graphs with 6 Tasks and 3 Levels

-• N-I)- + ((N-1)=) N-1 -

arrangements. Hence, if we can show that all of the aN arrangements are unique, then we

". shall have obtained all the arrangements with N tasks and r levels.

Lemma 5.1

All arrangements created for process graphs with N tasks and L levels using the Algorithm C
are unique.

Proof

Assume all unique arrangements with (N-1) tasks and r-1,2, . ,(N-1) levels. To construct
the arrangements with N tasks and L levels, where 15L:_N, we add a task to the new LeA level

for all arrangements with (N-LI) tasks and (L-l) levels, and we add a task to the bottom level of

all arrangements with (N-1) tasks and L levels. The arrangements for the former case will have

only one task at the LA level, while the arrangements from the latter case will have more than

one task in the LA level. Hence, between these two cases, no two arrangements can be identical.
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We know from the assumption that all the arrangements with (N-1) tasks are unique;
V

therefore, the resulting arrangements after adding a new level, the L" level, with one task in it,

should still be unique in the former case; the resulting arrangements after adding a new task to

the LeA level should also be unique within the latter case. Thus, all (AIarrangements

obtained by our algorithm are unique.

Theorem 5.2
All arrangements created by Algorithm C for N-task process graphs are unique.

Proof.
From Lemma 5.1 we know that the arrangements are unique within each level r. Since arrange-
ments in different levels cannot be similar to each other (this is due to the constraint that each
level Must have at least one task), no two arrangements in the 2(t4-1) arrangements created by
Algorithm C are similar to each other.

From this Construction method, we see that the number of arrangements for N tasks
and r levels actually forms a Pascal tree. In the next section, we show that, as; N becomes large,
the distribution of the number of arrangements with respect to the number of levels is Gaussian.

5.2.3 Distribution of the Number of Arrangements

The number of arrangements for an N-task process graph with respect to each level is a
binomial number. If we analyze the distribution of the tasks as a random variable, Y', such that
if Y, - 1, a new task is added to a new level; if , - 0, it is added to an existing level. In a
Pascal tree, this is equivalent to going either to the left (i.e. the number of levels remains the

same) or to the right (i.e. the number of levels increases by one) of the current location in the
next level of the Pascal tree.

N
We define a random variable, Y E Y. where

I {1 eith probability q
0 uh probability p - -q

19



PN (k) ) (N/jpN-&qk, which has the mean of N q N/2 and a variance of Np q N14 when
1

p In terms of our parameters, when Y, - 1, we add the new node i to a new level of the

arrangement; when Y, - 0, we add the new node i to one of the existing levels. Summing N of

the random variables Y, , we have an arrangement with Y levels. This distribution is the same

as the distribution for the number of arrangements with respect to the number of levels in a

process graph with N tasks. If we normalize this distribution so that the mean is zero and the

variance is one, then the characteristic functionl is given by IMISE641

N

N

where i= P'].

Since e" a +

2 2 717" 2

2

Let X be a random variable with probability distribution function Fjz). The characteristic

function of Fjz) is the function 0 defined for real w by

O(w) -f e"~ dFjz) =~)iw

where i vii,

u(w) f coswz dFlz)

and
0

$ w) = f sinwzdFlz)
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where 0 (z) denotes any function which goes to zero faster than z, that is, ur [...!)
S-0 Z J

Take the limit as N approaches infinity to obtain

W2"

But e 2 is the characteristic function of a normalized (i.e., mean - 0 and variance = I )
Gaussian distribution. Thus, we have shown that the number of arrangements with respect to

the number of levels is Gaussian distributed.

5.2.4 Chernoff Bound on the Tall ProbabUlty

Suppose we want to know the probability th.i'. a randomly selected arraagement has

more than y levels. The Chernoff bound [KLEI751 gives us a very good bound on this hail p~o-

bability.

First, from [KLEI751 we find the moment generating function for the sum of N Bernoulli

S.trials. For N - 1,
p-b..

1 2

which indicates that, with probability ., we add a new level ( e"), and with probability I we
2'

don't add a new level ( eo '). We now define the semi-invariant generating function

'y(V) -nAgu)- In[ L+.L'Jw

The Chernoff bound for the tail of our density function is given by JKLEI751 as

PIY >  -:-q+N7(")

Since this inequality is good for any value of v > 0, we should choose v, as in [KLEI751, to
create the tightest possible bound. This is done by differentiating the exponent and setting it to

zero. We then find the optimum relationship between v and y as

) • .M
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Hence, we have

Prob( Y.2: y< C 7 ,(1) )

We let Y + -4Ne, and O< c<. In order to find the optimum relationship between v and yi,
2 2

we let

y -yOV

j1N 2 uN- -
1 1 1+ev

2

Solving for v, we get

v- In

N- In

112+

Figure 5.2a shows several curves of P versus c with various values of N where P is the

upper bound on the tail probabilities such that Prob Y Y> A + Nc) P. We note that,

as N increases, the probability is concentrated closer to 1=~ ., and the bound on the tail

probability falls faster. Figure 5.2b shows the probability of a randomly selected process graph

having more than y levels.
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R-_100

100

N -5500

.N- 100

.0001

Figure 5.2a Chernoff Bound
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5.2.5 Generation of Random Process Graphs

Random process graphs can be produced by at least the following four methods. In the

first method, we are given the total number of levels for all graphs and a probability distribu-

tion of the width of each level. After selecting a random number of tasks for each level, pre-

cedence relationships are created by randomly connecting the nodes or the adjacent levels with

the direction of all edges pointing toward the terminal node.

P[Y.> y 

Figure 5.2b Prob fY > j

For the second method, we initially produce a connected undirected random graph with
a given number of tasks and edges. We next select a given node as the initial task and assign
edge directions to the nodes one hop away. This is followed by assigning edge directions from

nodes that are one hop away to nodes that are two hops away. This procedure is repeated until
the edge of the node farthest away from the-initial node has been assigned a direction. Any
remaining undirected edges can have either direction. Then, in order to conform with a normal
process graph, we add an additional terminal node. An edge will be added to this terminal node

from all nodes with an out-degree of zero.

88-o

...............................................................
.....................,.J

. . . . . . . . . . . . . . . . . . . . . . . . . .

". .. . . . . . . . . . . .. ... . . . . . . . . .

E . . . . .. . . . . . . . . . . . . . . . . . . . . .



---- ....... "

If the number of precedence relationships are large, the resulting process graph will sen-

erally have a large number of levels. This is due to the constraint that no precedence relation-

ships are allowed between any two tasks on the same level. If this edge does exist, one of the

nodes is pushed down to the following level. In fact, if the number of edges equals 2N{4)! 2
only one process graph can be generated - a linear chain of N tasks.

Drawing from the theory of branching process [HARR63I, the third method uses the

Galton-Watson branching process to create a random graph. In this process, level one has one

task. Then, for each task at level , it has the probability Pk to create k new tasks at the (i+1)"

level, where k-.,1,2, • • •. An edge connects each of the new tasks with the creating task. If a

task creates no new task, it is extinguished, and it has a precedence relationship to any task on

the next level. A difficulty with this method is that there is a possibility that the process graph

will have an infinite number of levels. If a finite-level process graph is found, it is, by our

definition, a structured process graph.

Finally, Dodin [DODI81I proposed another method of creating random process graphs

with N nodes and M edges. In his method, the adjacency matrix that represents the precedence

relationships is created in the following two ways:

1. Deletion Method

Create an adjacency matrix with the upper triangle full of l's. Randomly delete

MN-i) - M edges on the condition that there exist at least one edge into and one edge
2

out of any node.

2. Addition Method

Distribute one edge to nodes (1,2) and one edge to nodes (N-1, N), and randomly distri-

bute the remaining M- 2 edges to the upper triangle of the adjacency matrix on the

condition that there exist at least one edge into and one edge out of any node.

From this adjacency matrix, a process graph is generated by mapping all the edges in

the matrix onto a set of N nodes enumerated from 1 to N. Because only the upper triangle of

the adjacency matrix can have l's, the resulting directed graph is also guaranteed to be acyclic.
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Hence, as the number of tasks per job becomes large, the concurrency measure takes on

the value of one half.

5.4 Random Task Service Times (k, G, z', P - oo)

5.4.1 Bounds on the Average System Time without the Number of Precedence Rela-

tionships

In this section, an upper bound and a lower bound on the average system time are

f round for the random process graph with N tasks and task service times that is exponentially

distributed.

6.4.1.1 Upper Bound

We wish to find an upper bound on the average system time of an N-task process graph.

From the Chernoff bound we know the probability of a randomly chosen process graph having

more than y levels in its arrangement. Thus, for a specific y, if we can find an upper bound,

then this bound should be correct for any process graph with probability of l-Prob Y> A. In

this section we obtain an upper bound for process graphs with the number of levels equal to or

-*: less than M. As N-.oo we can let y be arbitrarily close to (but greater than) the mean number

of levels, m, and the probability that the average system time of any randomly selected process

- graph will be smaller than this upper bound will approach one.

The following two lemmas provide an upper bound on the average system time for

arrangements with less than or equal to y levels where m< V:5 N.

Lemma 5.9

Given N tasks, and y levels for a process graph, if we assign -tasks to each level, then the

resulting forced synchronization time (FST) is the maximum average system time with respect to

the other arrangements of the tasks with y levels.

Forced synchronization time is defined to be the time required to process a process graph such

that each task in a given level is being blocked by all the tasks in the previous level. In other

words, we are forcing the tasks to be executed one level at a time (with all tasks in a given level
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waiting for the slowest task in the previous level to complete before they all start execution).

Proof of Lemma 5.3

Since the tasks have been assumed to have exponential service times with a mean of -,the

blocking time of a task with d tasks blocking it is (see Section 4.3.1)

f'[-o--01 di

With n, tasks in each level i, i -1,2, , -y, we have the upper bound on the total average sys-

tem time S as

owll ma*'1

subject to the conditions:

and

,a,>O Vi

We must show that ii) - t oy each level j~maxiMiZes SU,,,

NAssuming n, -- for all j, gives the maximum S~y,
If

Suppose there exists another arrangement such that its FST S' is larger than SE. Let

n1' :, ~;. I~ na I n41, In

be the arrangements, where

n>- for 1<K#e

pg



-N for e+1<i<t

Nn*<- for t+ 1:5 K

then

IIV

N.where w,:? 1 Vi, a - ' - #- is the total number of additional nodes added to levels 1 to e,
h- y

and b - yt--~ nk is the total number of nodes taken out of levels (1+1) to y. Since the

total number of tasks remain constant, each additional task over A for a level i where a is

between I and v, one task must be taken out of another level jwhere jis between 1+1 and p
Therefore, amb. Now,

1~~W >L> I.

and

1 <1 1< W <N
N N-- 1 -W

Thus,

u..S.~LaJ 1T1I

pWI N +1 N I

Since - < ,we have V<SVI which contradicts the assumption. Hence, we have

shown that the arrangement

gives us the maximum FST.



In the cases when n, is not an integer in the above lemma, the arrangement that gives
the maximum FST is constructed as follows. Let u - Remainder of N N nee ato

then n,-=w+1 forj- 1,2,, ,uand n,-wrorjmu+1, . From theproofof

the above lemma, we know

V1

Therefore, the arrangement n, =-Vj still gives us the maximum FST for any process graph

having y levels even if there is a possibility that no process graph can have fractional nodes in a

level.

Lemma 5.4

Given the FST calculated in Lemma 5.3 for an N-task and p-level process graph, it is also the

maximum FST for any process graph with less than y levels.

Proof

This lemma can be formulated as the following nonlinear optimization problem

Maz Sim;Y4E

subject to Vp15p

We know that the harmonic series [KNUT73a],A, can be approximated by

SIMIi 2n 12n 2

where *is the Euler's constant (-0.57721 ... ).Therefore,
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Now, we assume yVis ~continuous,

Os 1 1 Y,

NaNiVN

NN Y2Ne i

For I <-y1 :5N, we find that -LS>0, or the slope of S versus Vi is positive in the region

1:5y1:5N. Since at yj 1,

S. -E-7

we have 5>0 as an increasing function with respect to yl. The condition y1:5V implies that the
maximum S Occurs at YJ = V. Therefore, the maximum FST obtained for an N-task process
graph with M levels is also the maximum FST for all M-ask process graphs with less than V' lev-

The next theorem follows as the result of the two above lemmas.

Theorem 5.5
An upper bound for the average system time of an N-task process graph with y' levels or less and

exponential task times with mean -a

suo(y) - .t
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This upper bound is good only for process graphs with less than or equal to y levels.
But since the number of arrangements in a process graph is Gaussian distributed, we expect that

N
for M > -F-, as N-oo, the probability that a randomly chosen process giaph has a higher aver-
age system time than Su89(y) gets smaller. In fact, we show in the next theorem that as N-.ooo,

N
and y T-+N6 for any small positive 6, the tail probability Prob! Y s:, or the probability that
a process graph has more than y levels, approaches zero.

Theorem 5.6

For y - -L+N6, where 6 is a real positive number, and Y is the number of levels in a randomly2
selected process graph, we have

lim Prob(Yn! [-0

Proof:

The Chernoff bound gives us

Prob[y>1,1< IN4 2 42 J+e

In order for lim Prob Y> d ~-O we must show
N-Ce

In .1+le e'

Since v -In - and since O<e<i. (from Section 5.2.4), we have t'>O.
1 2

Let z =e', or v In nz, where z> 1. The inequality we must show becomes

(I+Zln .+.l < zlnz
02 2

Taking the exponential of both sides, we get
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+ <

2<22

For z> 1, e2 is always greater than - (+- 1+)

Hence we have shown lrm Prob[Y ! - 0 for any 6>0.
N-00

III "

With N a large number, we can then state that the upper bound on the average system

time is

IV NU
rli Prob Nl S $ 5 NM El I

N-00A ol

where NL 6), Nu- N (- + 6) and 6 is any arbitrarily small number. That is,
2 2

SU- - 3

5.4.1.2 Lower Bound

For an N-task process graph, if we are given the number of levels V, then we know that

the minimum amount of average processing time is g- where i is the average processing time

of a task. With respect to- all arrangements of the process graph with N tasks, this average pro-

cessing time will be a lower bound with probability 1-ProbYF<AI. Since the number of arrange-

ments with respect to the number of levels is Gaussian distributed with mean A-, from the sym-

metry, we have ProbY<-- - ProbI >- +A. Hence, all the properties of the Chernoff
2 ro[ 2

bound discussed in the last section can be applied here also. Specifically, we can let N--oo, for

arbitrary small 6, and 6>0, then

lim Prob[NI I-6); <SLN5 I + - 1

This is true since the tail probability approaches zero as N becomes very large. Thus,

SLB a
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5.4.1.3 Discusslon

In last two sections, we see that for N 1, the average system time for the case

k, G. z', P - co is bounded by
.'. I N < < 3 N""

2 4

with high probability. In terms of speedup, it is bounded by

1 <a 2.
3

So, on the average, the best speedup we can achieve is two and the least speedup is

I

5.4.2 Upper Bound with a Fixed Number of Precedence Relationships

We have studied random process graphs without considering the number of precedence

relationships in the previous section. We have obtained some general properties of the arrange-

ments of the tasks for process graphs and bounds on the average system time. The upper bound

and the lower bound obtained are probabilistic such that as the number of tasks becomes large,

the more certain we are regarding these bounds. However, if we now include the number of pre-

cedence relationships, we can improve these bounds

In this section, the number of precedence relationships are introduced into the model.

We will obtain a tighter bound using the number of precedence relationships, the number of lev-

els and the number of tasks in a random process graph as parameters. We first develop the idea

of minimally connected proces graph.. The number of edges required for the minimally con-

nected process graph are studied as well as how additional edges can be added to it. Next, an

algorithm is presented which gives a construction method for a process graph G' with N nodes,

M edges and L levels. We will prove that the forced synchronization time (FST) obtained from

process graph G' is indeed an upper bound on the average system time of all random process

graphs with N nodes, M edges and L levels.
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." 5.4.2.1 MInImally Connected Process Graph

, Given any arrangement, the M edges can connect only a limited set of tasks. No edges,

for example, are allowed to connect any tasks within the same level of a process graph. In Fig-

ure 5.3, we see the 26 legal places where the precedence relationships can be placed in a particu-

lar 3 level, 9 task graph: six positions between the first and the second level, eight between the

second level and the third level, and twelve between the first level and the third level.

Figure 5.3 Legal Places for Precedence Relationships

If we allow the M edges to be randomly distributed among all these legal places, we often find

that the process graph is not even connected. Even with a large enough number of edges, such

as M > N logN. there is no guarantee the resulting process graph is connected (although it is

highly likely).

For purposes of calculating bounds on the average system time, the underlying arrange-

ment must be connected such that each node is maintained at its proper level in the process

graph. A node, j, is said to be in it" level if there exists a shor test path from the initial node to

node j such that the number of nodes in this path equals i. We define M, to be the minimum

number of edges required to fix all the nodes of a particular process graph in this proper level.

All edges are between nodes of the adjacent levels instead of between nodes of non-adjacent lev-

els because of our definition of level and because of the following Lemma.

I .
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Lemma 5.7

The blocking time of an edge between two neighboring levels is greater than the blocking Lime

-of the same edge between two levels not neighboring each other.

Proof.

Suppose node i at level r is being blocked by node j which is at level r - 2. If there exist two

other edges (j,k) and (k,i) for any node k at level r - 1, then edge (j,i) presents no blocking to

node i (See Figure 5.4) ror the following reasons.

L E vEL r-2j

LEVEL r

Figure 5.4 Reduced Blocking Effect

As soon as node jis completed, node k starts execution. Since node k is still blocking node i, the
release of the blocking from node j to node i does not allow node i to start execution. If no such
indirect blocking edges exist, we notice the fact that the blocking effect of the edge (j,i) is

reduced partially by the average task time of other tasks in level r - I which do block node i.
Hence, the blocking due to the edge (j,i) is not worse than any edge (k,i) if node k belongs to

level r - 1.
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Since we will be looking for an upper bound on the average system time with a limited number

of precedence relationships and since the edges between adjacent levels result in greater block-

ing, we assume all edges are between two adjacent levels.

Figure 5.5 shows some examples of minimally connected process graphs. Each edge in

Figure 5.5 is necessary in order to fix the nodes in their proper levels within the process graph.
By deleting any one edge, the resulting process graph will be either disconnected or at least one

node is no longer in a path from the initial node to the terminating node.

Figure 5.5 Minimally Connected Process Graph-

go

|. . . . . . . . ." . . .
.I . . . . . . . . . .

. . . . . . . . . . . .
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From Lemma 5.7, we can calculate the exact value of M. for a process graph. Since we

are looking for an upper bound of the average system time, we place all the edges between

nodes in adjacent levels. Define n, to be the number of tasks in level i, for i - 1, 2, L.

For any two adjacent levels, say levels i and i + 1, if n, > n, + 1, then there must be at

least n, edges between i0 level and (i + 1)t level. Otherwise, at least one of the nodes, say node

j, in the i0 level will have no edge leaving it and the path from the initial node toward the ter-

minating node stops at node j. This contradicts the definition of a task in a process graph.

Therefore, there must be at least n, edges between levels i and i + 1.

If, on the other hand, n, < n, + then there must be at least n, + I edges between i"

level and (i + 1)* level. If there are less than n,+1 edges, then at least one of the nodes, say

node j, in (i + 1)tA level has no edges entering it. It cannot be in any path from the initial node

to the terminating node. This contradicts the definition of a task in a process graph, therefore,

there must be at least n, + I edges between levels i and i + 1.

By selecting the larger of n, and n, +I to be the minimum number of edges between lev-

els i and i + 1, we have enough edges to keep all nodes in the i0 and (i + 1)k levels properly

defined. Summing over all levels, we have

M, max( n,n4 + max( n2 ,n4 + "" + max nL,,n4

The rules for making the minimally connected process graph are:

Let levels i and i+1 be adjacent in the process graph,

1. n, < n,.,

For each node in level i we assign an integer 1, 2, 3, ... , n, and for each node in level

i + I we also assign an integer 1, 2, 3, ... n,+,. Let , represent a node in level 41 and

* equal to the remainder of "--. Make a connection between node e of level i and node jn,
of level i + 1.

2. n, -n,+

For each node in level i, connect it to any node in level i+1 with indegree of zero.

"'' 3. n, > no+,

For each node in level i and +1, we assign an integer 1, 2,..., n, and 1, 2, 3, n,+.
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respectively. Let j represent a node in level / and s equal to the remainder of

Make a connection between node j of level i and node s of level i41.

In all the cases above, each node in the i0 level has at least one edge going to some

node in the (i + 1)'k level and each node in the (i + 1)* level has at least one edge entering it

from some node in the i2t level. By extending this method to all levels, all nodes, except the ini-

tial and terminating nodes, have at least one edge entering and one edge leaving it. Hence each

node is on a path between the initial and terminating node and each node is held in its proper

level in the process graph. Thus, we have a method for creating minimally connected process

graphs.

After we place the M, edges into the arrangement of a process graph, there are still

many pairs of nodes between the adjacent levels where an edge can be placed. We call each of

these pairs as the empty edge slot (EES). All M- M, edges are placed randomly into the EESs.

Two lemmas relating the values of M, with the other parameters of a process graph are:

Lemma 5.8

For any process graph with N nodes and L levels, the maximum number M, occurs in process

graphs which have node arrangements such that the levels with more than one node .

separated with at least one level which has only one node. In these cases,

Maz M- 2N- L -1 (I.)

Proof.

We are maximizing

M,- E Ma: n. nsJ
wl-

with respect to the numbers (n;)

L
Subject to n,- N

Consider 4 adjacent levels j-1, .j, j+1, and j+2, such that n., , n). n, n+,2 are respectively the

• number of nodes in each level. We assume n, > n> , then there are four cases relating the

values of n,- 1 and n, and the values of n,+I and n, +2 (The arguments for the case nr, :n, is
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similar to the following discussion). We must show that the arrangement with

Ys, - is, + is, + 1 1 and n' ) + I with other levels having the same number of nodes gives us

a higher M,.

Case 1. n, >n...I and n1 ~ +1 n+2

In calculating Max M, for these four levels, we have 2 edges between these three pairs

of levels, where

Zm 11n,+ n, + n + I

But if we change the arrangement to n,-, is, + n,.+1 1, 1.n,. 2 then the number of edges

becomes

2' -n-In,. - 1 +n,+ n,+ -1I+ n,+ 2

But Z' is largerthan Z since

Z' -Z 2n,+ 2(ns, + 11) + n, + 2 (2n, + n,+ 1)

-n, + 1 2 + n +2> 0

Thus, the arrangements of n, = n, + ns,. 1 + 1 and n,;+ 1  1, while fxing the values of other

n,'s. will give a higher or equal value of M,.

Case 11. n,-,. > n,1 > n,+ > n,+ 2 1

For this cue, we have

and by shifting (n, + 1 1) nodes from (j+ 1)S9 level to jtA level, we have

and

Hence, Z' >2 or the new arrangement will give a possibly higher value of M,.

Caue Ill. 1 nj < n, + < n, < n+ 2
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The argument for this case is similar to Case I above.

Case IV. n,-_ > n, > n+., > 1 and n,+ 2 > n1+1

In this case,

Z- ny -_I+ ny + +2

and by shifting (n, + - 1) nodes from (j + 1)' level to ,th level, we obtain

n,- + "I+ 1,+ -+ ny+ 2 if n,-_> n, + n,+,-1 .I

Z' 12 n, + 2 n, - 2 + n,+2 if n_ 1 n1 + n,+ -

Therefore,

n=(,.J -I > o it _,.1 > , + ,n,+, - 1..- ~ ~~~ ~~Z' -Z -- n n + - - x Oi n~ < n + I"

in,+ 2n1+ - - ,-,> 0 if is,-. 1  n, + n,., -

or the new arrangement gives a higher value of M.

So for all four cases, we can always obtain a larger Max M by shifting nodes from the

(n, + n)t level to the nh level such that n
1
,D n, + n+, 1 - 1 and n)+l - .

To see that Max M occurs when the levels with more than one node are separated by

at least one level which has only one node, we coriider four adjacent levels again. Suppose the

four adjacent levels j - 1, j, j + 1, and + 2 have 1, n, 1, n; +2 nodes respectively where is > 1

and n, + 2 2 1. In calculating Max M, for these four levels, we have a sum of

Z - n, + n,+ n,+2

By shifting one node from ? level to (j + 1)t4 level, this summation becomes

Z - (),- I ) + (,- 1 ) + Maz (2, n,+ 2 )

-2 n,- 2 + Maz(2, n,+2)

and

SZ-Z' 2 + n, + 2-Maz (2, n,+21>0.

The value of M, is smaller when we shift one (or more) node from the jt level to the (j + I),4

level. Hence, Max M, occurs when the levels with more than one node are separated by at least

one level which has only one node.
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The simplest arrangement of the N-node and L-level process graph with this property

has N - (L - 1) nodes in one level between the second and the (L - 1)* level and one node in
each of the remaining (L - 1) levels. With this arrangement, we see that

Max M, (L - 3 + 2 (N- L + 1)

or

Max M, 2 N - L - I

Lemma 5.9

The minimum M,. occurs when the nodes are distributed evenly among all levels. Let

N-2
Z Remainder of

Then

Proof.
We are minimizing

Min M, - E max n,, n.+4

with respect to the numbers na

L
* Subjecl lo E n, - N

Suppose the Min M, occurred in an arrangement where four adjacent levels
j - 1, j,ji+ 1, and j +2have an equal number of nodes,
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Now we show that by moving a node from the j level to the (j - 1)4 level, the value of M. for

the resulting arrangement will be larger.

In calculating Max M, for these four levels, we have a sum of

Z- I + j + Im -3 n.

By moving one node from ?A level to (j + 1)0 level, we have a different sum of

Z' -n,I + (n, + )(n, +1)--3n,+2> Z

The same is true in cases

1. n,-, mnm n, +, zand n, 2 - Y

2. nj- n,- z and n,+1 M 1+2,m Y

3. n,.- zand - nj + I ny + 2 -

Hence, we see that if we try to assign an 'equal' number of nodes to each level for all levels, we

obtain the minimum M. Thus, besides one node in the initial level and one node in the ter-

minating level, each of the first z successive levels will have z nodes and each of the other

(L - z - 2) levels will have y nodes. Finally, we have

Min M, - z+1)lz + (L-z-2)y

5.4.2.2 An Upper Bound

In Section 5.4.1.1, an upper bound for the average system time was obtained from the

arrangement with an equal number of nodes per level. Indeed, this is also true in the case of

process graphs with a fixed number of edges. We show this in the next theorem after giving an

algorithm (Algorithm A) which constructs an N-node process graph with M edges in L levels.

ALGORITHM A

STEP 1: Distribute one node for the initial task and one node for the terminating

task.
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STEP 2: Let

N-2
z Remainder of-E7

For each of the levels 2. 3, .. ,z+1, place z nodes in them, and for each of the levels
z+2, z+3, .. ,L-1, place y nodes in them.

STEP 3: Use M, (z+ 1)z + (L-z.-2)y edges to minimally connect this arrangement
of tasks.

STEP 4: Randomly distribute the remaining edges, M - M,, uniformly among the

EES's.

* Theorem 5.J0
* If we construct a process graph with N nodes, M edges, and L levels according to ALGORITHM

A, and assuming each task has an exponential service time distribution with mean -,then an

* . upper bound on the average system time is

where

-j the mazimum number of blocking edges into a node in levelj

b, max [bjI it anode in level~i

be indegree of node q from the minimally connected procen& graph
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EES, n number of empty edge slots between levels j--I and j

EESr - total number of empty edge slots

n,_1  number of nodes in level i-1

Proof.

Case 1) For M > max M,

In this case, there are enough edges such that b, equals the number of nodes in the pre-

vious level, n., for all levels j 1 2. Therefore 1, - n,_1 for all j a2. The proof that the

arrangement generated by ALGORITHM A gives the largest FST is similar to the proof of

Lemma 5.3 of the last section. Therefore, we only need to show that with M > max Mi we

have enough edges for each level to force the maximum indegree of a node in that level to be

equal to the number of nodes in the previous level (i.e. b, n..1 ). The number of extra edges

is

M- M,

> Max M,- Min M,

- LI - 1N-2] +-

where z is the remainder of -2 Since for z not equal to zero, the value of Min M, becomes
L-2

smaller, we shall let - 0.

The inequality we wish to prove is then

(2N-L-1) - L -
1+ >':

The left hand side represents the number of additional edges remaining after Max M, - Min M-

have been distributed equally between the L-2 levels plus one edge representing the minimal 7.

connection of the node. The right hand side represents the number of nodes per level. Multi-

plying both sides by (L-3), we get
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2N-L--L---- _ (N-. J 1)-.3} - (L-3)

2NL- 4N
- ,-2 - 2N

Which clearly is true. In other words, we have enough edges to force the maximum blocking for

each level. Hence the FST obtained from ALGORITHM A does give an upper bound for the

average system time.

Case 21 Min M, < M < Maz M,

Let

A.. k7 1~

AO)- 1
L L

We are maximizing EAd,) subject to , do : constant, where d is the maximum indegree at

level q. From the proof of Lemma 5.3, we find that the arrangement of d that gives the max-

imum sum of Ad) is

d constant q-34

- L- 2

and d, - 0 and d - 1. This arrangement is exactly what ALGORITHM A generated. So for

Min M, < M 5 Max M, SuB obtained from the FST of the arrangement generated by ALGO-

RITHM A is also an upper bound.

Figure 5.6 gives the minimally connected process graphs for some of the arrangements

with N = 10 and L - 6. Table 5. 1 shows simulation results and the predicted upper bound for

the average system time with M - 12 for the process graphs with the arrangements shown in

Figure 5.6. Since the arrangement of nodes in Case I in Figure 5.6 requires a minimum of 13

edges to be minimally connected and M < 13, no process graphs can be created with 12 edges,

" " and we cannot Bnd its average system time.
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Cue Simulated Average Calculated
System Time Upper Bound

I not feasible 378.7

II 364.24 378.7

I1 362.98 378.7

IV 367.53 378.7

Table 5.1

5.4.3 Comparison of The Two Upper Bounds

Two upper bounds have been obtained with different parameters. In Section 5.4.1.1. an

upper bound was obtained through the probabilistic method on the likelihood of a process graph

having a certain number of levels or less. In Section 5.4.2.2, another upper bound was obtained

with a fixed number of nodes, edges, and levels. Since the latter method uses more information,

its bound should be tighter than the bound obtained by the former method.

Let Su represent the upper bound obtained in Section 5.4.1.1 and SE1W represent the

upper bound obtained in Section 5.4.2.2.

Theorem 5.11

s V , :5 S UB if L .<. .-

Proof.

Case 1)L < N

From the calculation of S , we know that SM is the largest FST for any process graph

having [-#1 levels.

°2
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Since the number of levels is smaller than we have proved in Lemma 5.4 tha SUB

is also the maximum FST for all levels less than . Hence, SuM _ Sus.

Case 2) L

In this case, the arrangements used to obtain both bounds are the same. If the number

of edges, M, is greater than or equal to max M , SUBM is obtained with max FST of this arrange-

ment or

SUBM - SUBN

If M < max M , there will not be enough edges at every level for the maximum FST. Thus,

-SrM < SUB

From the above two cases, we conclude SuBM < SL if L < .M2
When L > , it is likely that SuBh > SE. The upper bound $UBM uses more

inoformation but it is a worse bound. This implies we did not use the information optimally in

calculating Suv. The inequality (Suzm > SuB) is not always true because with different param-

eters of N, M, and L, it is possible to construct counter examples. Also note that since L N
2

due to the law of large numbers, the case (L [. A.) is not likely to occur.

5.5 Trade Off between Average System Time and Utlisatlon of Processors for a

Diamond-shaped Process Graph (k, G", z, P < oo)

Given a process graph, if we have enough processors such that the number of processors,

P, assigned to one job is greater than Maz n,), then the average system time is just the time

required to process L levels of nodes. The utilization of the P processors is, however, very low.
In order to utilize each processor more, on the other hand, the average system time will

"". 111 .
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increase. In this section, we will study this trade off by using the notion of "power" defined in

Chapter 4. The average task time is assumed to be constant. So we define

Power = R.. sio1

where p is the efficiency of the P processors, S is the average system time, and 1 is the constant

task service time (i.e., - is the normalized average system time).X

If we can assume that the shape of process graphs is bounded by a parallelgrarn (as in

Figure 5.7) which can be characterized by two parameters, L and m (where L is the number of

levels in the process graph and m is the slope of the diamond enclosing the boundary tasks in

this process graph). If the number of levels, L, is even, then we assume the {- I level and the

th

4- + I level have the same number of tasks.

Let n (1) denote the number of tasks on the I, level, and let n (1) - 1. Then, we know

1 : < L and L i even
nl(1)-nftl-i)--2 1

< 1< L + I andLi8odd
m2

S<-= I <t L and L it even
I2

m< I L andLie odd

? -- Hence, for an even number of levels L,

2 L

1)- 2+

In 2 L i 2 L2L + 1 1

and for an odd number of levels L,

... ~~~.....-. ....... .-...... ... .-. . . ...-. .,........ .,-......... .... •,.~* * . .' ,.."""' "- ".. ',
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F+r ex e l L -9< +a-d'm -2,-'he

22

2hLi Il +- L+ I <L
M+ - 2 -- 2--T  .

I-o-

For example, let L s9 and m =2, then

n( I)il+ - l-1 -I forl<l< L+1

and

[2 l l, l -m 1 2 1 -- 2 l-

0(1 = 1 rL + < I < L

2

Therefore, given m and L, the total number of tasks N in a process graph is

L

2 + I (i-I I + 1+ -+ I L odd

L I -1 + L([+ I L evenSI m 2
(L-i ( I--- +-( L-I L +1 Lodd

Next, we define

B = the width of the process graph at the widest level

211 + L even

I + L odd
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H M Le number of levels in a process graph before all P processors

become busy

Figure 5.7 shows a typical diamond-shaped process graph.

Figure 5.7 Diamond-shaped Process Graph

We find

2 Hp + [~
pmP

V]

* . where
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PIefficiency averaged OWe i 41a lh ime when not oil P processors are busy

1 + H + 1

and

V= N-2 Em + (i-i

Note that when P -1, then H I and we expect p -1; this can be verified from the
above expressions. Furthermore, if P -AB we have for even number of levels L,

P In I

1.
- ~ 2 + -2

- m+ LII

and for L odd, we have

2 H p, + [V

where
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V-(-)+-- I)+1

M L L2 I+

L 1 m 2 2 IIL2IJ

and

m m+ L - 1

Thus,

2 H pi-1
L

LI
2 L+1 1I 1+ ~

2 1+L-1 M m

2m+ L L

2m+L-2

For both case of p, we see that

limp

This can be observed from the fact that the area occupied by the diamond is exactly balf the
area of a rectangle with L levels long and P - B processors wide. The reason that p is not
exactly one half for small L is due to the fact that a full task might not be able to exist on the

* boundary of the diamond.
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As an approximation, we assume each level has a continuum of tasks. We now find the
number of processors that maximizes power R.

Let i be the index of the levels in G and let n, be the number of tasks in level i, then

2i;-:'2 n, -- - ...- - -

m

B _L
m

Pm

We find

Sum of the fraction of P processor#
P [kept busy during the processing timcJ

total time required to process thi, job

B.'2

n, P + PH1 1 - 2 2

BL ",P

T  PH

.- 2 2

H+ 2l 2 +Hj

BLP

B L PH

2 + -

214H+1.'L 2

-'BP m PHL2'2+ -.
"

2mP

Pm L2
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and
Pm L2

- P

Thus,

p 2mP

To find the number of processoM that gives the maximum power, we take the partial derivative
of R with respect to P,

aR

Sf2m

PMP

Pm L 2PLP 2

Pm + 2 m -Vr

- _~~ ,V m . + .JV.

I_ 2 -f -V)

-P Pm21 2 m

_- + -L (5.2)

82 Rand we also need to show < 0.
or-

82OR I

':2 + Lmp

* - Pm

i, '118
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2 63 L1 + 12 Le
18 32 4 4P2 3 2 mP

3 Le 5 L' 6 L0 1[3
4 m ) T mP&-7 2 77

For P< -,Equation (5.3) is less than zero.

Simplifying Equation (5.2), we have

-L2 M L 4 Le P? L'm L
8 4mFO 8m3P' 2 4 2Pm2  4m3P7'

m 2 -3 mL , L'L 4 +VP
2 8 4m 2m2  8 M3

For any value of m and L, we can numericay solve this equation for P and this is the

optimal number of processors required per job to achieve the maximum power.

If we are simply given an S versus p curve, we can Aind the optimal number of proces-

sors. First, we solve for P from the expression for p for a specific value of '

Pm. 2 
' 

2

2 ~ 1 2mP M

2 2 m

- 1+/1P+ L-p (- ')0
2 mp

We owsusttue hi Pbak itoth eprssonfoL5

+ 'no I -r

2I

- . * -. ... - **M

. . . . . . . . . .. . . . . . . . . . .

. . . . . . .- ..- . . . . . . . .~ . . . . . . . . . .

We now.substitute this P back into the.expression.for.S,



S +C + I7)L2
S +

MP I + Vp1- )j( P

Intretigl, i nt fncio o mwhn ptma nmbei fpoesr r sd o

a~~~~ sp+ii uVliato + weP otIn the saeSrgr Les 2fteveftesoe

cveIntere stight isnet fuomtthe oigi aprhng froima thmero ritss r Figre us.8). r

Figure 5.8 S versus~

From this method we can find the p' at the intersection and substitute back into the expression
for P to obtan the optimal number of processors

*The S versus p curve does not start from p -0 because the minimum poccurs when
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B L2
m+-m

": l +2 2

L

22
L L

In addition, because no jobs can be finished in less than L normalized units of time, we have

S L.

Figures 5.9-.13 show some examples of the average system time versus utilization

curves for several values of L. Table 5.2 compares the optimal value of P' solved from the

* • equation with the value calculated by using the pe obtained from the Figures S9.".13.

L P exact solution with m -i

10 0.82 6.06 _ 6.284

20 0.78 11.98 12.047

30 0.76 18.23 1 17.824

40 0.76 23.83 1 23.594

50 0.75 30.232- 29.369

Table 5.2

The Ps obtained from Figures 5.9-5.13 theoretically should be the same as P's calcu-

lated from the equation and they are very close to each other. But more interestingly is the fact

that P" is approzimately equal to 0.6-. In other words, we should provide a number of proces-
In

sots for each job equal to six tenths of the number of levels L divided by the slope of the process

graph.
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Figure 5.95S versus p with L - 10



75L- 20

020

6 f .2 .3 A .5 .6 .7 .8 -.9 1.0

Figure 5.10 S versus pwith L -20



0- L- 30

- - ~'-0.76 --

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Figure 5.11 S versus pwith L -30 A



50 L - 40

*=0.76

0 1 .2 .3 .4 .5Y . .7 .8 .9 .
Figure 5.12 S versus P with L -40



70-

L- 50

-0. 75

.1 3 ..4 .5 .6 .7 .8 -.9 1.0

Figure 5.13 S versus o with L -So p



Substituting the value of P' into the expression for the average system time,

P' rn L2

2 2 m P'

we have an approximate average system time

0.6 L L2

2 + 2(o.6)L

1. 133 L

Note that if we do not care about the low utilization of processors, then, by using maximum

number of processors, the average system time is S - L. The slightly larger S' is the trade off

between the utilization of processors and the average system time of jobs. Furthermore, we

note that the approximate concurrency measure is

S(P)
S(1)

1.133 L
L2

2 m

2.266 m
L

5.8 Bounds on the Average System Time with a Limited Number of Processors

(k, G', z, P < co)

In this section, we limit the number of processors to a constant P. With a finite number

of processors, we have the problem of scheduling tasks. When more than one task demands a

processor and only one processor is available, we are forced to pick one task to be processed.

The method of selecting which task to be processed next in general effects the average system

time of the job.
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Assuming unit task processing times, a lower bound on the average system time can be

easily calculated as

SLE max[L ~

where L is the number of levels, N is the number of tasks per process graph, k is the number of

jobs, and P is the number of processors.

A very loose upper bound can be obtained by using the Longest Expected Processing

Time First assignment algorithm [C0FF761. Assume P < k, and that we assign only one pro-

cessor to a job. Whenever a job is completed, the processor looks for another unstarted job to

process. Idled processors are not allowed to assist other jobs. Since only one processor works on

a single job, the structure of the random process graph does not influence the execution time.

Each job will take the same amount of processing time of N z units.

Let s and t remainder of ±~, then an upper bound is

SUB ui.~NP +(2N)P + + (sN)P + (+)N]

If we allow random tasks time, with the distribution F(t) and mean of X. and if we

*require synchronization of P jobs (i.e. all P jobs must all finish before starting anothler P jobs),

then we have the Longest Expected Remaining Processing Time First assignment algorithm

ICOFF761 which gives

+ (Me1+ + + +4

where

M. M imaxjX a 12,

and all M. haue thse same distribution
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V

X, random task time for task j of job i

From the Law of Large Numbers,

r N

Jimn Prob, I .- <CI I e,>O

Hence,

lim Prob $V -NYP + 2N,?P + • +NYP + -1) .-
N--PobS k (+)N"y

or

[ , iNP + (z + 1)NXy
lim Iob

n i , Pro - k-

The bounds obtained in this section are very loose. The minimum average system time

is known to be achieved by the Shortest Expected Remaining Processing Time First (SERPT)

1COFF761 scheduling algorithm. But with random process graphs, we don't know the exact

structure of each process graph in order to apply the SERPT.

5.7 DIscussion

In this chapter, we have attempted to observe some properties of the arrangements of

random process graphs. We found a method to construct all the arrangements of the tasks for a

process graph with N tasks. The distribution of the number of arrangements with respect to the

number of levels was shown to be Gaussian. The tail probability of this distribution was

bounded by the Chernoff bound. Next, an upper bound and a lower bound for the average Sys-
tem time were obtained for a specific number of levels in a process graph. As N becomes large,
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the probability that the average system time of a randomly chosen process graph is between the

upper bound and the lower bound calculated near the mean number of levels approaches one.

The number of precedence relationships and the number of levels were added to the

model next. The bounds for this case were found and compared to the previous bounds.

We used the notion of power to study the trade off between the utilization of the pro-

cessors and the average system time. A very loose upper bound was presented for the case

where the number of processors is Onite.

,'..
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CHAPTER 6
Process-communication Graphs

In the previous two chapters, we have assumed that the cost of sending data between

processors is free and that the communication between them can be achieved instantaneously.
In reality, there is always some delay occurred when communicating between the processors.

Gentleman JGENT78I found that in a multiprocessor environment, even though data
paths are provided to move data between processors, data from one processor is only immedi-
ately available to a small number of other processors, and in general, moving data from one pro-
cessor to another requires several submoves. Gentleman uses the matrix multiplication on
ILLLAC IV, where processors are connected in a two dimensional rectangular grid, as an exam-

ple. For the multiplication of two N by N matrices, at least -- data movements are

required. Hence, we cannot ignore the communication cost in general.

To minimize the communication cost, we will try to assign as many tasks as possible on
a processor. Of course, there will be no communication cost if all the tasks are assigned to a
single processor. On the other hand, we are looking for maximum concurrency which will tend
to use as many processors as possible to execute the tasks. A compromise must then be made to

balance between these two opposing objectives. Consequently, we can no longer assume that
there are an infinite number of processors. With a limited number of processors, the need for
task assignment comes back.

In this chapter, we still, use the process graph discussed in Chapter 3. Except, we will
add in the communication tasks that represent the communications required between the proces-
sors. We will look at how the number of processors will affect the average system time and how
we can obtain the average system time by converting the process-communication graph into a
Markov Chain (similar to Algorithm CPM in Chapter 4, but with some differences due to the
limited number of processors). We do not address the task assignment problem specifically.
Instead a simple rule of thumb is used in deciding which processor a task should reside in and
where the communication tasks are added in the process graph.
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6.1 Communication Tasks (k, G, z °, P < oo)

We have assumed in Chapters 3, 4 and 5 that the tasks in a process graph may be

assigned to any processors and that there is no communication cost of passing data between

tasks due to the contention on the communication bus or the physical distance between any pair

of processors. In this section, we explore a way to represent this communication cost in the

model discussed in Chapter 4.

We assume that the process graph is fixed and that the task service time is exponen-

tially distributed with a mean of sec. If each task is residing on a different processor, then

there exists a communication delay between any two tasks if there is a precedence relationship

between them. We will treat this communication cost as another task whose service time is

exponentially distributed (with a mean of 1 sec.). For example, Figure 6.1b is the process

graph obtained when we add communication tasks to the process graph of Figure 6.1a.

4 3

Figure 6.1a Process Graph

A communication task S,, represents the communication between a processor where task i is

residing and a processor where task j is residing. We will call the process graph with the com-

munication tasks added the "process-communication graph'.

Of course, if a task I has several subtasks 1. t • , I., where a 2, we can assign

one or the subtasks on the same processor where task t was executing. We assume for now that

the subtask selected to reside on the same processor with task t is picked at random, and when

two tasks reside on the same processor, the communication cost between these two tasks is zero.
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- 7-7

22

Figure 6.1b Process-communication Graph

In the example shown in Figure 6.1b, we can let tasks I and 2 reside on one processor

and let tasks 3 and 4 reside on another processor. The resulting process.communication graph is

shown in Figure 6.2.

Since the communication task is treated just like a regular task, we see that there could

be concurrent execution of regular tasks and a communication task. If we assume multiple com-

munication busses, then more then one communication task could execute in parallel also. In

Section 6.3, we will examine the case when only one communication task is allowed to execute

at any given time.

The exact communication time requirement depends upon the access protocols, the com-

. munication bandwidth, the volume of data to be transmitted and the physical locations of the

processors requiring the communication. Lee [LEE77I, discussed in Section 2.3.6, approximated

the communication cost by multiplying the volume of data to be transmitted by the distance of

the two processors. His method assumed that the volume of data transmitted between two pro-

cessors is fixed and the distance between two processors is a constant multiplied by the number

of hops or a linear function of the physical distance.

In this chapter, we let o - aa where a is a real number greater than zero. If a > 1,

the communication task takes less time on the average than the regular task. In particular,

when a oc, communication cost is then zero.
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Figure 6.2 Process-communication Graph

Using Algorithm CPM (Section 4.2.2), we can conyert a process-communication graph
into a Markov Chain to solve for the average system time. Figure 6.3 is the Markov chain for
the process-communication graph of Figure 6.2. Recall that C, is a state where all the tasks in

a are executing concurrently.

We wish to solve for the a such that the resulting average system time equals to
.S P -1). We denote such a as a, Note that with a = a., the concurrency measure or equals

one. This will allow us to separate out those systems which yield a net improvement when

parallel processing is introduced.

Using the balance equations and the fact that the sum of all equilibrium state probabili-
ties equals to one, we obtain the expression for a, for the example shown in Figure 6.3 as

3+ga,+7a6 1
1 Ast.) - 2s,+2a,.A
SP -1) 4 1

A'P

Solving for a,, we get as 2.3027. In other words, it is, > 2.302 7 1s, for the job represented by
Figure 6.1a, multiprocessing is still faster than the single processor (even with the communica-
tion delay). But if j*, 5 2.3027ps, then it is better to process this job on a single processor.
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6.2 Limited Number of Processors Per Job ( k, G, z', P < oo

If there are limited number of processors and the number of processors, P assigned to a

job G is smaller than the width of G, then the scheduling of tasks to processors is required.

Whenever there is more than one task waiting for an available processor, we must consider the

communication costs when deciding which task should be processed on this processor. If the

available processor does not have the data necessary for executing a task, the data must be

transmitted from another processor. Thus, we have a difficult optimization problem of assigning -.

tasks to the processors. In this section, we discuss some simple rules of thumb in assigning

tasks. These rules most likely will not produce the best assignment in terms of minimizing the

average system time, but it provides a basis for analyzing the effect of having different number

of processors for a specific process graph.

The rules of thumb for assigning tasks to processors are

1. For a task /, if there is only one task j such that there is a precedence relationship (Q),

then assign task j to the same processor where task i is processed.

2. For a task /, if there is a set of tasks a such that there is a precedence relationship (i,jQ)
where j c a, and there is only one available processor, assign all the tasks a to the same

processor where task i is processed.

3. For a task i, if there is a set of tasks a such that there is a precedence relationship (i,)

where j c a, and there is more than one processor available, supposing there are P' pro-

cessors and z tasks in the set a, then

i. forz< P'

assign one task j e a to the processor where task i is processed, create one com-

munication task for each of the z-1 tasks and assign each of them to a separate

processor.

ii. for:> P'

assign (a-#f +1) tasks to the processor where task i is processed, create (P' -1)

communication tasks and assign the rest of the tasks to each of the (P' -1) pro-

cessors.

4. For a task i, if it has only one edge (, j) leaving it and task j has been assigned to

another processor p, then create a communication task to transfer the data to processor

p.

Figures 6.4-6.6 show a simple example of the task assignment.
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Figure 8.4 Process Graph

g1

Figure 6.5 Proces-communication Graph with P -2
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Figure 6.6 Process-communication Graph with P m 3

Figure 6.4 is the original proem graph. Figure 6.5 shows the assignment for the P 2 case,

and Figure 6.8 shows the assignment for the P - 3 case. In Figure 8.5, tasks 1, 2 and 4 reside
on one processor while tsks 3 and 5 reside on the other processor. In Figure 6.6, tasks 1 and 2

reside on the first processor; tasks 3 and 5 reside on the second processor; task 4 resides on the
* third processor. If we draw circles around the task assignments in the original process graph of
* Figure 6.4, any precedence relationship that connects tasks across these circles indicates that a

communication task is required.

When the communication cost is assumed to be zero (s c o), we expect the p5S versus

P figure to look like Figure 6.7. When P-I1, p - N where N is the number of tasks in the

process graph, and as P increases, the value of p5S will approach N' where - is the average

system time S (P -oo) obtained in Chapter 4.
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Figure 6.7 jS versus P

In general as the cost of the communication increases (srmaller a), the average system
time will increase also. Figure 6.8 is a typical example of a family of curves for MS versus P.

For a specific value of P, let us say P', there will be a specific a = a, such that the value of ;S
at these values of a, and P' equals to N. In other words, the advantage of multiprocessing on
P' processors is erased by the communication cost (with mean time of between proces-

-. a, j

sors. As a becomes smaller than a specific a', the communication cost becomes too large for any
multiprocessing at all, and the normalized average system time is greater than N.

Figures 6.9-15 show an example of the process graph (Figure 6.9), the process-
communication graphs with various values of P, P - 2,3,4,5,6, (Figures 6.10-14), and the result-
ing family of ;& curves venus P (Figure 6.15). Of course these process-communication graphs
are for a specific assignment of tasks to processors. But the behavior of the curves is likely to

be similar for all other assignments.

For some of the curves, a horizontal line intersects the jScurve at two points as in Fig-
ure 6.16. This implies that the average system time is the same whether we use P processors or
P2 processors. We are interested, then, in the issue of efficiency of the processors. Since

P2 > P1, and in both cases the same amount of work is completed in the same average system
time, the P2 processors must be idling more (waiting for the communication tasks to complete).
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Figure 8.8 p S versus P with a Family or a

144



A

Et If

Figure 8.9 A Process Graph
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Figure 6.10 Procew.communication Graph with P -2
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Figure 8.12 Process-communication Graph with P -4
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Figure 6.14 Process-communication Graph with P -6
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Figure 6. 15 yS versus P
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Figure 6. 15 IiS versus P with a specific value of ,iS'
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V..
Let us denote the average system time when P I 1 to be S and the average system

time with P processors and with is, = aa to be Sp (a). The total work to be done is constant

and equals N I second which is also S. Let P denotes the efficiency of the processors where I

S,
is defined to be which is the total useful work done divided by the time necessary for

P Sp(a)

the P processors to process this amount of useful work multiplied by P. If we define

- a), where C1a) is a constant for a specific a, then
SP (a)

17 C1a)
P..;

Therefore, we can see the trend that the efficiency of the multiprocessors decreases as

the number of processors increases.

6.3 One Communication Bus (k, G, z', P < oo)

-"' -

In the last two sections, we have assumed that there is more than one communication

bus such that whenever a processor needs to send data to another processor, it will be transmit-

ted without having to wait for a communication channel. In this section, we assume that there

is only one communication bus such that only one processor may be transmitting at any given

time. We also assume that communication tasks are perfectly scheduled such that if there is

more than one communication task required to be transmitted, then each of them will be

transmitted in turn and each of them knows who is to be transmitted next (no collisions).

To obtain the average system time, we again convert the process-communication graph

into a Markov chain. The states of the Markov chain are represented as C, Dp where the set a

contains tasks to be executed in parallel, and the set 0 contains all the communication tasks

waiting to be transmitted. If the set 0 is not empty, then one of the tasks in a must be a com-

munication task. After the communication task in a finishes, we can activate one of the tasks

in 0. The conversion algorithm is same as Algorithin CPM of Section 4.2.1, with the

modification that each time a task i completes the execution, we add the following two tasks:

1. as the result of the completion of task 4 if there is a set of communication tasks becom-

ing active, concatenate them into the set 
7

2. if task i was a communication task, and if the set 0 is not empty, bring one of the task

in set 0 into the set a.
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After the Markov chain is constructed, we can solve for the equilibrium state probabili-

ties and the average system time using the same method studied in Chapter 4. We expect that

the average system time with one communication bus is greater than the multi-communication

busses because of the delay caused by the non parallel processing of the communication tasks.

- For example, Figure 6.18 is one of the Markov chains that can be converted from the

process communication graph of Figure 6.17 where tasks 3, 4, 5, and 8 are the communication

tasks. After the task 2 in the state C23 D4 completes, the communication task 5 is concatenated

to the set 8, communication task 4 cannot be moved to the set a because task 3 is a communi-

cation task and there is only one communication bus available; after the communication task 3

in the state C23 D4 completes, one of the communication tasks in the set 0 can be activated, and

task 6 can also start execution (since it has received the information from the communication

task 3.)

14

I7

Figure 6.17 A Process Communication Graph
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6.4 Discussion

In this chapter, we added the communication overhead to the process graphs. This

overhead is represented as new nodes in a process graph. The resulting graph is called the

process-communication graph and it may be converted into a Markov Chain to obtain the aver-

age system time.

When the number of processors is limited to P, we presented some rules of thumb on

how tasks should be assigned to processors and where communication tasks must be added.

This assignment was by no means the 'optimal' assignment. It was used so that we could

analyze the processor communication graph and study a few facts regarding it. For example, we

found the behavior of the pS curve when plotted against P and how it behaves when the param-

eter a increases. We also found the efficiency of the P processors which worked on a job.

- Finally, we studied the communication problem when only one communication bus is

allowed. The difference between this case and the two previous cases was when converting a

process-graph into a Markov Chain, we cannot let more than two communication tasks to be

- . executed at the same time. The additional communication tasks were kept in a first come irst

served queue.
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